Analysis of fluorophores of organic substances dissolved in Suvani river water using reversed-phase liquid chromatography

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Reversed-phase high-efficiency liquid chromatography was used in combination with detection by multiwave fluorescence for analysis of organic substances dissolved in natural water of the Suwannee River. Also analyzed were the stable electrophoretic fractions А, В, and C+D, obtained by a combination of preparative size-exclusion chromatography and analytical electrophoresis in a polyacrylamide gel. Fraction А has the largest molecular size, and fraction C+D, the smallest. Using 3D fluorescent analysis, humic-like fluorescence was detected both in the original sample and in all fractions; protein-like fluorescence is almost fully localized in fractions А and В of the largest and middle molecular sizes. The wide peak of humic-like fluorescence is split into several groups of fluorophores with different emissions maxima (435, 455, 460, and 465 nm) and degrees of hydrophobicity. The obtained results were analyzed in relation to contemporary theories of formation of humic-like fluorescence of dissolved organic substances. The low-molecular free aromatic amino acids tyrosine and tryptophan were identified in fractions А and В of the highest molecular size and constitute >50% of the protein-like fluorescence of the organic substances dissolved in the Suwannee River water. The data obtained ensure better understanding of the molecular nature of protein-like and humic-like fluorescence of organic substance dissolved in natural water.

Full Text

Restricted Access

About the authors

O. A. Trubetskoy

Institute of Basic Biological Problems of the Russian Academy of Sciences

Author for correspondence.
Email: olegi03@yahoo.com
Russian Federation, Pushchino

O. E. Trubetskaya

Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: trub@bibch.ru
Russian Federation, Pushchino

References

  1. Варшал Г.М., Велюханова Т.К., Кощеева И.Я. Геохимическая роль гумусовых кислот в миграции элементов // Гуминовые вещества в биосфере. М. Наука, 1993. С. 97–116.
  2. Дроздова А.Н., Пацаева С.В., Хунджуа Д.А. Флуоресценция растворенного органического вещества как маркер распространения пресных вод в Карском море и заливах архипелага Новая Земля // Океанология. 2017. Т. 57. № 1. С. 49–56.
  3. Лакович Дж. Основы флуоресцентной спектроскопии. М.: Мир, 1986. 496 с.
  4. Трубецкой О.А., Трубецкая О.Е. Обратно-фазовая высокоэффективная жидкостная хроматография стабильных электрофоретических фракций почвенных гуминовых кислот // Почвоведение. 2015. № 2. С. 166–174. (Перевод: Trubetskoj O.A., Trubetskaya O.E. Reversed-phase high-performance liquid chromatography of the stable electrophoretic fractions of soil humic acids // Eurasian Soil Sci. 2015. V. 48. P. 48–156.
  5. Трубецкой О.А., Трубецкая О.Е., Ришар К. Фотохимическая активность и флюоресценция электрофоретических фракций водных гуминовых веществ // Вод. ресурсы. 2009. Т. 36. № 5. С. 543–550. (Перевод: Trubetskoj O.A., Trubetskaya O.E., Richard C. Photochemical activity and fluorescence of electrophoretic fractions of aquatic humic matter // Water Res. 2009. V. 36. P. 518–524.)
  6. Хунджуа Д.А., Пацаева С.В., Трубецкой О.А., Трубецкая О.Е. Анализ растворенного органического вещества пресноводных озер Карелии обратно-фазовой высокоэффективной жидкостной хроматографией с одновременной регистрацией оптической плотности и флуоресценции // ВМУ. Сер. 3. ФИЗИКА. АСТРОНОМИЯ. 2017. № 1. С. 66–73. (Перевод: D.A. Khundzhua, S.V. Patsaeva, Trubetskoj O.A., Trubetskaya O.E. An Analysis of dissolved organic matter from freshwater Karelian lakes using reversed-phase high-performance liquid chromatography with online absorbance and fluorescence analysis // Moscow Univ. Physics Bull. 2017. V. 72. № 1. P. 68–75.
  7. Alberts J.J., Takács M. Total luminescence spectra of IHSS standard and reference fulvic acids, humic acids and natural organic matter: comparison of aquatic and terrestrial source terms // Org. Geochem. 2004. V. 35. P. 243–256.
  8. Andrew A.A., Del Vecchio R., Subramaniam A., Blough N.V. Chromophoric dissolved organic matter (CDOM) in the Equatorial Atlantic Ocean: Optical properties and their relation to CDOM structure and source // Mar. Chem. 2013. V. 148. P. 33–43.
  9. Barsotti F., Ghigo G., Vione D. Computational assessment of the fluorescence emission of phenol oligomers: A possible insight into the fluorescence properties of humic-like substances (HULIS) // J. Photochemistry and Photobiol. Aю Chem. 2016. V. 315. P. 87–93.
  10. Boyle E., Guerriero N., Thiallet A., Del Vecchio R., Blough N. Optical properties of humic substances and CDOM: relation to structure // Environ. Sci. Technol. 2009. V. 43. P. 2262–2268.
  11. Coble P. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy // Mar. Chem. 1996. V. 51. P. 325–346.
  12. Coble P.G. Marine optical biogeochemistry: the chemistry of ocean color // Chem. Rev. 2007. V. 107. P. 402–418.
  13. Coble P., Green A.S., Blough N.V., Gagosian B.R. Characterization of dissolved organic matter in Black Sea by fluorescence spectroscopy // Nature. 1990. V. 348. P. 432–435.
  14. Hedges J.I. Global biogeochemical cycles: progress and problems // Mar. Chem. 1992. V. 39. P. 67−93.
  15. Hubberten U., Lara R.J., Kattner G. Refractory organic compounds in polar waters: relationship between humic substances and amino acids in the Arctic and Antarctic // J Mar Res. 1995. V. 53. P. 137–149.
  16. Huguet A., Vacher L., Saubusse S., Etcheber H., Abril G., Relexans S., Ibalot F., Parlanti E. New insights into the size distribution of fluorescent dissolved organic matter in estuarine waters // Org. Geochem. 2010. V. 41. P. 595–610.
  17. Keil R.G., Kirchman D.L. Abiotic transformation of labile protein to refractory protein in sea water // Mar. Chem. 1994. V. 45. P. 187–196.
  18. McKay G., Couch K.D., Mezyk S.P., Rosario-Ortiz F.L. Investigation of the coupled effects of molecular weight and carge-transfer interactions on optical and photochemical properties of dissolved organic matter // Environ. Sci. Technol. 2016. V. 50. P. 8093–8102.
  19. Senesi N., Miano T.M., Provenzano M.R., Brunetti G. Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy // Soil Sci. 1991. V. 152. P. 259–271.
  20. Stedmon C.A., Markager S., Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy // Marine Chem. 2003. V. 82. P. 239–254.
  21. Trubetskaya O.E., Richard C., Voyard G., Marchenkov V.V., Trubetskoj O.A. RP-HPLC and spectroscopic characterization of Suwannee River water NOM after concentrated urea treatment and dialysis // Desalination and Water Treatment. 2016. V. 57. P. 5358–5364.
  22. Trubetskaya O.E., Trubetskoj O.A., Voyard G., Richard C. Determination of hydrophobicity and optical properties of soil humic acids isolated by different methods // J. Geochem. Explor. 2013. V. 132. P. 84–89.
  23. Trubetskoj O.A., Richard C., Guyot G., Voyard G., Trubetskaya O.E. Analysis of electrophoretic soil humic acids fractions by reversed-phase high performance liquid chromatography with on-line absorbance and fluorescence detection // J. Chromatography A. 2012. V. 1243. P. 62–68.
  24. Wu F.C., Evance R.D., Dillon P.J. Separation and characterization of NOM by high-performance liquid chromatography and on-line three-dimensional excitation emission matrix fluorescence detection // Environ. Sci. Technol. 2003. V. 37. P. 3687 –3693.
  25. Yamashita Y., Fichot C.G., Shen Y., Jaffe R., Benner R. Linkage among fluorescent dissolved organic matter, dissolved amino acids and lignin-derived phenols in a river-influenced ocean margin // Frontiers in Marine Sci. 2015. V. 2. P. 1–14.
  26. Yamashita Y., Tanoue E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids // Mar. Chem. 2003. V. 82. P. 255–271.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A multi-stage scheme of fractionation and analysis of SRO.

Download (430KB)
3. Fig. 2. Three-dimensional fluorescence spectra of the initial drug CPO and fractions A, B and C + D obtained using EC – EPAG. The fluorescence intensity is indicated by different colors in the upper right corner of each figure.

Download (266KB)
4. Fig. 3. RP-HPLC of SRO preparations, fractions A, B, C + D and authentic tyrosine and tryptophan amino acids with registration of fluorescence intensity at λ3 / λsp - 270 nm / 330 nm (solid line) and λ3 / λisp - 270 nm / 450 nm (broken line).

Download (158KB)
5. Fig. 4. Fluorescence spectra of peaks 1–7, 1a, 3a, and 4a obtained during RP – HPLC of CPO preparations and fractions A, B, C + D. The spectra were extracted from the data of a multiwave fluorescence detector at an elution time corresponding to the peak of the corresponding peak.  

Download (245KB)

Copyright (c) 2019 Russian academy of sciences