The distribution of clopidogrel in the organs of poisoned animals


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Clopidogrel is a representative of antiplatelet agents, which is effectively used in the combination treatment of cardiovascular diseases (acute coronary syndrome, ischemic stroke, transient ischemic attack, peripheral artery diseases, and others). In China, this drug is very often used for suicide. There have also been cases of clopidogrel poisoning in the treatment of COVID-19. The chemical and toxicological study of this drug is relevant in today's conditions. Objective: to investigate the distribution of clopidogrel in the organs of animals poisoned with this drug. Material and methods. The investigations were conducted on laboratory animals. TLC and extraction photometry were used as methods of analysis. Male rats were injected with a triple LD50 of clopidogrel bisulfate into the stomach. The test substance was extracted from the biomatrices of dead animals with diethyl ether and chloroform, eluted with chloroform-acetone (80:20) and ethanol-acetic acid-water (5:3:2) systems. The substance was identified by the Rf value (TLC). The analyte was quantitative determined using extraction photometry. Results. The largest amounts of the test substance were found in the liver (82.88±1.34 pg/g), intestines (54.43.6±1.97 pg/g), and urine (89.69±1.33 pg/g) of the animals. Conclusion. The findings suggest that for clinical laboratory studies, blood (serum) should be taken for analysis within the first three hours after taking clopidogrel. For the purposes of forensic chemical analysis in case of fatal poisoning with clopidogrel, it is recommended to send the stomach with the contents, intestines, liver, and urine for their examination.

Full Text

Restricted Access

About the authors

L. S Anosova

Donetsk National Medical University

Email: apteka-nanya@yandex.ru
16, Ilyich Pr., Donetsk 83003, Ukraine

References

  1. Nijenh V.J. et al. Anticoagulation with or without Clopidogrel after Transcatheter Aortic-Valve Implantation. N. Engl. J. Med. 2020; 382 (18): 1696-707. DOI: https://www.nejm.org/doi/full/10.1056/NEJMoa1915152
  2. Nairooz R. et al. Meta-analysis of clopidogrel pretreatment in acute coronary syndrome patients undergoing invasive strategy. International J. of Cardiology. 2017; 229 (15): 82-9.
  3. Capodanno D., Alberts M.J., Angiolillo D.J. Antithrombotic therapy for secondary prevention of atherothrombotic events in cerebrovascular disease. Nature Reviews Cardiology. 2016; 13: 609-22.
  4. Редьюна E.А., Ткаченко Н.О., Гладишев В.В. Маркетинге дослщження укра'нського ринку антиагрегантв. Фармацевтичний журнал, 2016; 3-4: 12-15. @@Red'kina E.A., Tkachenko N.O., Gladishev V.V. Marketing of antiplatelet agents in the Ukrainian market. Farmacevtichniy zhurnal. 2016; 3-4: 12-5 (in Ukrain)
  5. Clarke's analysis of drugs and poisons in pharmaceuticals, body fluids and postmortem material. 4th ed. (ed. by A.C. Moffat, M.D. Osselton, B. Widdop). London : The Pharm. Press, 2011; 2609.
  6. Lin G.-Q., You Q.-D., Cheng J.-F. Chiral drugs: chemistry and biological action. Hoboken: Wiley. 2011; 472.
  7. Методика измерений массовой концентрации метил-(+)-(8)-альфа-(о-хлорфенил)-6,7-дигидротиено [3,2-с] пиридин-5(4Н)-ацетата гидросульфат (клопидогрела гидросульфит) в воздухе рабочей зоны методом спектрофотометрии. Методические указания. МУК 4.1.333316. Москва, 2016. [Электронное издание]. Режим доступа: https://files.stroyinf.ru/Data2/V4293751/4293751370.htm(дата обращения: 23.05.2021). @@Methods for measuring the mass concentration of methyl - (+) - (8) -alpha- (o-chlorophe-nyl) -6,7-dihydrothieno [3,2-c] pyridine-5 (4Н) -acetate hydrogen sulfate (clopidogrel hydrosulfite) in working area air by spectrophotometry. Methodical instructions. MUK 4.1.3333-16. Moscow, 2016. [Electronic resource]. Access mode: https://files.stroyinf.ru/Data2/1/4293751/4293751370.htm(circulation date 23.05.2021) (in Russian)
  8. Wang Z.Y., Chen M., Zhu L.L. et al. Pharmacokinetic drug interactions with clopidogrel: updated review and risk management in combination therapy. Ther. Clin. Risk. Manag. 2015; 11: 449-67.
  9. Wolfe K.S., Kress J.P. Risk of procedural hemorrhage. Chest. 2016; 150: 237-46. doi: 10.1016/j.chest.2016.01.023
  10. Al Asmar R., Zeid F. Acute Hemothorax Causing Hemorrhagic Shock Following Small-bore Thoracocentesis in a Patient on Clopidogrel: A Case Report and Literature Review. Cureus. 2020; 12 (3): 7431. doi: 10.7759/cureus.7431
  11. Бондар В.С., Аносова Л.С. Екстракційнофотометричне визначення клопідогрелю. Український медичний альманах, 2012; 15 (5): 43 - 44. @@Bondar V.S., Anosova L.S. Extraction-photometric value of clopidogrel. Ukraїns'kiу medichniу al'manakh. 2012; 15 (5) 43-4 (in Ukrain)
  12. Бондар В.С., Аносова Л.С. Екстракцшно-фотометричне визначення клотдогрелю. Укра'нський медичний альманах, 2012; 15 (5): 43 - 44. [Bondar V.S., Anosova L.S. Extraction-photometric value of clopidogrel. Ukrai'ns'kiy medichniy al'manakh. 2012; 15 (5) 43-4 (in Ukrain)]
  13. Бондар В.С., Аносова Л.С., Шовкова З.В. Изолирование клопидогрела и его метаболита из биоматериала. Фармация Казахстана, 2013; 7: 34 - 37. @@Bondar V.S., Anosova L.S., Shovkova Z.V. Isolation of clopidogrel and its metabolite from biomaterial. Farmatsiya Kazakhstana. 2013; 7: 34-7 (in Russian)
  14. Бондар В.С., Аносова Л.С., Шовкова З.В. Изолирование клопидогрела и его метаболита из биоматериала. Фармация Казахстана, 2013; 7: 34 - 37. @@Bondar V.S., Anosova L.S., Shovkova Z.V. Isolation of clopidogrel and its metabolite from biomaterial. Farmatsiya Kazakhstana. 2013; 7: 34-7 (in Russian)
  15. Patti G., Micieli G., Cimminiello C., Bolognese L. The Role of Clopidogrel in 2020: а Reappraisal. Cardiovasc. Ther. 2020. doi: 10.1155/2020/8703627

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies