Comparative investigation of the efficacy of Cortexin®, Pineamine®, levilimab, adalimumab, and dexamethasone on cytokine storm models


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. During the coronavirus infection pandemic, there remains relevant to search for drugs that have a therapeutic effect on the cytokine storm as the main cause of complications in this disease in humans. Objective: to evaluate the efficiency of in vitro and in vivo administration of Cortexin® and Pineamine® versus levilimab, adalimumab, and dexamethasone against proinflammatory cytokines. Material and methods. In an in vitro experiment, a model of a lipopolysaccharide (LPS)-induced cytokine storm was created using the RAW 264.7 cell line, followed by measuring the level of TNFa in the culture medium. In an in vivo experiment, a murine model of septic shock was formed by a single intraperitoneal injection of LPS. The clinical condition and mortality of animals and their plasma level of proinflammatory cytokines IL-6 and TNFa were evaluated. Results. The in vitro study showed that Cortexin® and Pineamine® had a therapeutic effect on the level of TNFa in the culture medium. In the in vivo experiment, Cortexin® and Pineamine® decreased the severity of clinical signs of the disease and mortality in animals, exerted a therapeutic effect on IL-6 and TNFa levels in a cytokine storm, exceeding that for the comparison drug levilimab. Conclusion. Cortexin® and Pineamine® versus the comparison drug levilimab have shown a comparable or higher therapeutic activity in in vitro and in vivo models of cytokine storm. The results of the investigation and consideration of the safety profile and low cost of organic preparations have led to the conclusion that Cortexin® and Pineamine® are promising drug candidates for further design as an element of combination therapy or prevention of complications of diseases, the pathogenetic mechanism of which involves the overexpression of proinflammatory cytokines (including complications of the novel coronavirus infection COVID-19).

Full Text

Restricted Access

About the authors

A. V Kalatanova

ZAO «Pharm-Holding»

Email: kalatanova@geropharm.com
34A, Svyaz St., Strelna, Saint Petersburg 198515, Russian Federation

E. I Trofimets

PHARMACY HOUSE Research and Production Association

Email: trofimets.ei@doclinika.ru
245, Kuzmolovsky Settlement, Vsevolozhsky District, Leningrad Region 188663, Russian Federation

A. N Afanasieva

ZAO «Pharm-Holding»

Email: alina.afanaseva@geropharm.com
34A, Svyaz St., Strelna, Saint Petersburg 198515, Russian Federation

V. B Saparova

ZAO «Pharm-Holding»

Email: valeriya.saparova@geropharm.com
34A, Svyaz St., Strelna, Saint Petersburg 198515, Russian Federation

K. L Kryshen

PHARMACY HOUSE Research and Production Association

Email: kryshen.kl@doclinika.ru
245, Kuzmolovsky Settlement, Vsevolozhsky District, Leningrad Region 188663, Russian Federation

I. E Makarenko

ZAO «Pharm-Holding»

Email: igor.makarenko@geropharm.com
34A, Svyaz St., Strelna, Saint Petersburg 198515, Russian Federation

References

  1. Lee D.W., Gardner R., Porter D.L. et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014; 124 (2): 188-95. doi: 10.1182/blood-2014-05-552729
  2. Шипилов М. В. Молекулярные механизмы «цитокинового шторма» при острых инфекционных заболеваниях. Лечебное дело. 2013; 1: 81-5. @@Shipilov M.V. Molecular mechanisms of the «cytokine storm» in acute infectious diseases. Lechebnoye delo. 2013; 1: 81-5 (In Russian)
  3. Garcia-Sastre A., Biron C.A. Type 1 interferons and the virus-host relationship: a lesson in detente. Science. 2006; 312 (5775): 879-82. doi: 10.1126/science.1125676
  4. Channappanavar R., Fehr A.R., Zheng J. et al. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J. Clin. Invest. 2019; 129 (9): 3625-39. doi: 10.1172/JCI126363
  5. Борисова Е.О. Побочные эффекты системной глюкокортикостероидной терапии. Практическая пульмонология. 2004; 3: 14-8. @@Borisova E.O. Side effects of systemic glucocorticosteroid therapy. Prakticheskaya pul'monologiya. 2004; 3: 14-8 (In Russian)
  6. Комердус И. В., Будул Н.А., Чеканова А.В. Системное действие глюкокортикоидных препаратов: в помощь врачу общей практики. РМЖ. 2017; 25 (1): 45-8. @@Komerdus I.V., Budul N.A., Chekanova A.V. Systemic action of glucocorticoid drugs: to help the general practitioner. RMZH. 2017; 25 (1): 45-8 (In Russian)
  7. Государственный Реестр предельных отпускных цен. [Электронное издание]. Режим доступа: http://grls.rosmin-zdrav.ru/PriceLims.aspx @@State Register of maximum selling prices. [Electronic resource]. Access mode: http://grls.rosminzdrav.ru/PriceLims.aspx (in Russian)
  8. RAW 264.7 (ATCC® TIB-71™). [Electronic resource]. Access mode: https://www.lgcstandards-atcc.org/products/all/TIB-71. aspx?geo_country=ru#generalinformation
  9. Raschke W.C., Baird S., Ralph P., Nakoinz I. Functional macrophage cell lines transformed by Abelson leukemia virus. Cell. 1978; 15 (1): 261-7. doi: 10.1016/0092-8674(78)90101-0
  10. Merly L., Smith S.L. Murine RAW 264.7 cell line as an immune target: are we missing something? Immunotoxicol. 2017; 39 (2): 55-8. doi: 10.1080/08923973.2017.1282511
  11. Shigemori S., Namai F., Yamamoto Y. et al. Genetically modified Lactococcuslactis producing a green fluorescent protein-bovine lactoferrin fusion protein suppresses proinflammatory cytokine expression in lipopolysaccharide-stimulated RAW 264.7 cells. J. Dairy Sci. 2017; 100 (9): 7007-15. doi: 10.3168/jds.2017-12872
  12. Sardari M., Skuljec J., Yin D. et al. Lipopolysaccharide-induced sepsis-like state compromises post-ischemic neurological recovery, brain tissue survival and remodeling via mechanisms involving microvascular thrombosis and brain T cell infiltration. Brain. Behav. Immun. 2021; 91: 627-38. doi: 10.1016/j.bbi.2020.10.015
  13. Alsharif K.F., Almalki A.A., Al-Amer O. et al. Oleuropein protects against lipopolysaccharide-induced sepsis and alleviates inflammatory responses in mice. IUBMB Life. 2020; 72 (10): 2121-32. doi: 10.1002/iub.2347
  14. Estimating the Safe Starting Dose in Clinical Trials for Therapeutics in Adult Healthy Volunteers. Guidance for Industry. Rockville: Food and Drug Administration. 2005.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies