Prospects for developing dietary supplements with taxifolin and andrographolide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Psoriasis is a chronic immunoinflammatory skin disease with a prevalence of about 2% among the population, characterized by immune system imbalance and excessive production of proinflammatory cytokines. Standard therapy is effective but limited by side effects, creating a need for new safe approaches.

Objective: theoretical substantiation of the prospects of combining taxifolin and andrographolide in a gel formulation for adjunctive psoriasis therapy based on analysis of current data on molecular targets of each component.

Material and methods. Analysis of current publications in PubMed, Scopus, eLibrary databases using keywords: taxifolin, andrographolide, psoriasis, inflammation, NF-κB, IL-17. Mechanisms of action at cellular and molecular levels, in vitro and in vivo study data were reviewed.

Results. Taxifolin primarily modulates inflammatory cascades in keratinocytes through NF-κB/STAT3 blockade, reducing IL-6, IL-8, CCL20 production. Andrographolide affects dendritic cells, reducing IL-6, IL-1β, IL-23 production through autophagic degradation of MyD88. The combined approach covers several key pathogenic mechanisms of psoriasis.

Conclusion. The combination of taxifolin and andrographolide has high theoretical substantiation for psoriasis therapy due to complementary mechanisms of action on different parts of the inflammatory cascade and potential synergistic effect.

Full Text

Restricted Access

About the authors

Tatyana V. Potupchik

Federal State Budgetary Educational Institution of Higher Education “Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky” of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: potupchik_tatyana@mail.ru
ORCID iD: 0000-0003-1133-4447

Associate Professor, Department of Pharmacology and Clinical Pharmacology with a Postgraduate Education Course, Candidate of medical sciences

Russian Federation, Partizan Zheleznyak str., 1, Krasnoyarsk, 660022

Mikhail A. Ananyan

Advanced Technologies LLC

Email: nanotech@nanotech.ru
ORCID iD: 0009-0007-9019-6981

CEO, Doctor of Technical Sciences, Academician of the Russian Academy of Natural Sciences

Russian Federation, Leninsky Prospekt, 52, sq. 430, Moscow, 119333

Mikhail R. Stepanov

Advanced Technologies LLC

Email: stepanson2008@gmail.com
ORCID iD: 0009-0003-0036-0495

Leading Technologist

Russian Federation, Leninsky Prospekt, 52, sq. 430, Moscow, 119333

Nikita G. Paskar

I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: nnikpaskar@yandex.ru
ORCID iD: 0009-0002-6656-6667
SPIN-code: 8269-0440

V year student

Russian Federation, Trubetskaya str., 8/2, 119991, Mosсow

Sofya Y. Khaustova

Synergy University (Moscow University "Synergy")

Email: sofya.khaustova@yandex.ru
ORCID iD: 0009-0001-1768-2170

Senior Lecturer, Department of Internal Medicine

Russian Federation, Leningradsky Prospekt, 80B, bldg. 3, Moscow, 125315

References

  1. Boehncke W.H., Schön M.P. Psoriasis. Lancet. 2015; 386 (9997): 983–94. doi: 10.1016/S0140-6736(14)61909-7.
  2. Parisi R., Symmons D.P., Griffiths C.E. et.al. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J. Invest Dermatol. 2013; 133 (2): 377–85. doi: 10.1038/jid.2012.339.
  3. Saggini A., Chimenti S., Chiricozzi A. IL-6 as a druggable target in psoriasis: focus on pustular variants. J. Immunol Res. 2014; 2014: 964069. doi: 10.1155/2014/964069.
  4. Michalek I.M., Loring B., John S.M. A systematic review of worldwide epidemiology of psoriasis. J. Eur. Acad. Dermatol Venereol. 2017; 31 (2): 205–12. doi: 10.1111/jdv.13854.
  5. Goldminz A.M., Au S.C., Kim N. et.al. NF-κB: an essential transcription factor in psoriasis. J. Dermatol Sci. 2013; 69 (2): 89–94. doi: 10.1016/j.jdermsci.2012.11.002.
  6. Le S., Wu X., Dou Y., Song T., Fu H., Luo H., Zhang F., Cao Y. Promising strategies in natural products treatments of psoriasis-update. Front Med (Lausanne). 2024; 11: 1386783. doi: 10.3389/fmed.2024.1386783.
  7. Hou J., Hu M., Zhang L. et.al. Dietary Taxifolin Protects Against Dextran Sulfate Sodium-Induced Colitis via NF-κB Signaling, Enhancing Intestinal Barrier and Modulating Gut Microbiota. Front Immunol. 2021; 11: 631809. doi: 10.3389/fimmu.2020.631809.
  8. Das A., Baidya R., Chakraborty T. et.al. Pharmacological basis and new insights of taxifolin: A comprehensive review. Biomed Pharmacother. 2021; 142: 112004. doi: 10.1016/j.biopha.2021.112004.
  9. Di T., Zhai C., Zhao J. et.al. Taxifolin inhibits keratinocyte proliferation and ameliorates imiquimod-induced psoriasis-like mouse model via regulating cytoplasmic phospholipase A2 and PPAR-γ pathway. Int Immunopharmacol. 2021; 99: 107900. doi: 10.1016/j.intimp.2021.107900.
  10. Афанасьева Н.И., Немчанинова О.Б., Доровских В.А. Влияние дигидрокверцетина на патоморфологические изменения в коже больных вульгарным псориазом. Дальневосточный медицинский журнал. 2010; (2): 67–70. Доступно: http://dkv99.ru/digidrocvertchetin/nauchnye-issledovaniya/
  11. Yuan Y., Zhang J., Wang H. et.al. Taxifolin attenuates imiquimod-induced murine psoriasis-like dermatitis by regulating Th cell differentiation via inhibiting Notch1 and Jak2/Stat3 pathways. Biomed Pharmacother. 2020; 129: 109747. doi: 10.1016/j.biopha.2020.109747.
  12. Владимиров Ю.А., Проскурнина Е.В., Демин Е.М., Матвеева Н.С., Любицкий О.Б., Новиков А.А., Измайлов Д.Ю., Осипов А.Н., Тихонов В.П., Каган В.Е. Дигидрокверцетин (таксифолин) и другие флавоноиды как ингибиторы образования свободных радикалов на ключевых стадиях апоптоза. Биохимия. 2009; 74 (3): 372–383. doi: 10.1134/S0006297909030122. Доступно: https://biochemistrymoscow.com/ru/archive/2009/74-03-0372/
  13. Plotnikov M.B., Aliev O.I., Maslov M.J., Vassiliev A.S., Kazakov A.A., Tyukavkina N.A., Plotnikova T.M. The antioxidant and membranotropic activity of taxifolin. Pharmacol Res. 2003; 48 (6): 607–12. doi: 10.1016/s1043-6618(03)00236-5. Доступно: https://pubmed.ncbi.nlm.nih.gov/14527823/
  14. Zhang X., Lian X., Li H. et.al. Taxifolin attenuates inflammation via suppressing MAPK signal pathway in vitro and in silico analysis. Chin Herb Med. 2022; 14 (4): 554–62. doi: 10.1016/j.chmed.2021.03.002.
  15. Shao F., Tan T., Tan Y. et.al. Andrographolide alleviates imiquimod-induced psoriasis in mice via inducing autophagic proteolysis of MyD88. Biochem Pharmacol. 2016; 115: 94–103. doi: 10.1016/j.bcp.2016.06.001.
  16. Тюкавкина Н.А., Шостаковский М.Ф., Девятко Н.Г. О распределении флавоноидов в древесине сибирской лиственницы. Известия СО АН, серия "Биологические науки". 1969; 3 (15): 77–83. [Tyukavkina N.A., Shostakovsky M.F., Devyatko N.G. On the distribution of flavonoids in Siberian larch wood. Izvestiya SO AN, seriya "Biologicheskie nauki". 1969; 3 (15): 77–83 (in Russian)].
  17. Dharmasamitha I., Mas Rusyati L.M., Wati D.K. et.al. The Potential Anti-psoriatic Effects of Andrographolide: A Comparative Study to Topical Corticosteroids. Recent Adv Inflamm Allergy Drug Discov. 2025; 19 (1): 46–70. doi: 10.2174/0127722708296983240424102212.
  18. Andrés R.M., Montesinos M.C., Navalón P. et.al. NF-κB and STAT3 inhibition as a therapeutic strategy in psoriasis: in vitro and in vivo effects of BTH. J. Invest Dermatol. 2013; 133 (10): 2362–71. doi: 10.1038/jid.2013.182.
  19. Gupta R.K., Gupta K., Dwivedi P.D. TWEAK functions with TNF and IL-17 on keratinocytes and is a potential target for psoriasis therapy. Sci Immunol. 2021; 6 (65): eabi8823. doi: 10.1126/sciimmunol.abi8823.
  20. Alzaharna M., Alqouqa I., Cheung H.Y. Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells. PLoS One. 2017; 12 (2): e0171325. doi: 10.1371/journal.pone.0171325.
  21. Park J.E., Kwon H.J., Lee H.J. et.al. Anti-inflammatory effect of taxifolin in TNF-α/IL-17A/IFN-γ induced HaCaT human keratinocytes. Appl Biol Chem. 2023; 66: 8. doi: 10.1186/s13765-023-00769-3.
  22. Хундерякова Н.В., Белослудцева Н.В., Хмиль Н.В. и др. Исследование влияния водорастворимой формы дигидрокверцетина при его введении per os на энергетический обмен в лимфоцитах крови крыс с экспериментальной кардиомиопатией. Вопросы питания. 2021; 90(6): 50-58. [Hunderyakova N.V., Belosludtseva N.V., Khmil N.V. et.al. Investigation of the effect of the water-soluble form of dihydroquercetin when administered per os on energy metabolism in blood lymphocytes of rats with experimental cardiomyopathy. Nutrition issues. 2021; 90 (6): 50–8. (In Russ.)]. doi: 10.33029/0042-8833-2021-90-6-50-58.
  23. Varlamova E.G., Uspalenko N.I., Khmil N.V. et.al. A Comparative analysis of neuroprotective properties of Taxifolin and Its Water-Soluble Form in Ischemia of Cerebral Cortical Cells of the Mouse. Int J Mol Sci. 2023; 24 (14): 11436. doi: 10.3390/ijms241411436.
  24. Тюкавкина Н.А., Руленко И.А., Колесник Ю.А. Дигидрокверцетин – новая антиоксидантная и биологически активная пищевая добавка. Вопросы питания. 1997; 6: 12–5. [Tyukavkina N.A., Rulenko I.A., Kolesnik Yu.A. Dihydroquercetin is a new antioxidant and biologically active food additive. Voprosy pitaniya. 1997; 6: 12–5 (in Russian)].
  25. Зеня Е.Н., Ильясов И.Р., Тюкавкина Н.А. и др. Оценка антирадикальных свойств экстракта семян льна и его композиций с дигидрокверцетином. Бутлеровские сообщения. 2012; 29 (1): 62–7. [Zenya E.N., Il'yasov I.R., Tyukavkina N.A. et al. Evaluation of antiradical properties of flax seed extract and its compositions with dihydroquercetin. Butlerovskie soobshcheniya. 2012; 29 (1): 62–7 (in Russian)].

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russkiy Vrach Publishing House