Effect of giant hyssop (Lophanthus anisatus Benth.) extract on free radical processes in the blood of rats


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Giant hyssop (Lophanthus anisatus Benh.) is widely used in folk medicine; however, its biological effects have been insufficiently studied. There is information about the effect of biologically active components of giant hyssop on free radical processes, but the ways and mechanisms of this action have not been clarified. Objective: to establish the possibility of regulating free radical processes in the rat blood and its cytokinetic characteristics during cycle intake of giant hyssop extract Material and methods. The investigation was conducted on adult male Vistar rats. 70% alcohol giant hyssop herbal extract was obtained by a percolation method. Red blood cells were counted in a Goryaev chamber; reticulocytes in the smears were estimated after staining with brilliant cresyl blue. The cytokinetic indicators of rat erythrocyte balance were determined according to the procedure described by E.A. Lipunova and M.Yu. Skorkina. The levels of lipid oxidative modification products were measured by malondialdehyde content and those of erythrocyte membrane proteins was done by the accumulation of carbonyl groups that reacted with 2,4-dinitrophenylhydrazine. The levels of reduced glutathione in the red blood cells were estimated using by Ellman's method. Superoxide dismutase activity in the hemolysates was assessed from the inhibition of adrenaline autooxidation in an alkaline medium. Catalase activity was determined by a spectrophotometric method. Hemoglobin concentration was measured using the reagent kit (Olvex Diagnosticum); erythrocyte membrane protein levels were determined by the Lowry assay. Results. It was shown that ten-day intake of giant hyssop extract (75 mg/kg) substantially decreased the erythrocyte membrane protein counts of carbonyl groups, but did not change the level of thiol groups in the membrane proteins and that of malondialdehyde and reduced glutathione in erythrocytes. The administration of giant hyssop considerably enhanced the activity of superoxide dismutase and catalase in the red blood cells. The use of great hyssop extract reduced the lifespan of mature red blood cells, but increased the delivery of young cells into the bloodstream, stimulating bone marrow hematopoiesis in the rats. Conclusion. The cycle use of great hyssop extract increases the level of antioxidant defense of erythrocytes and stimulates bone marrow hematopoiesis in rats.

Full Text

Restricted Access

About the authors

Nisred K. Klichkhanov

Dagestan State University

Email: klich-khan@mail.ru
Professor of the Department of Biochemistry and Biophysics, Faculty of Biology

Maria D. Astaeva

Dagestan State University

Email: mashia@mail.ru
Associate Professor of the Department of Biochemistry and Biophysics, Faculty of Biology

Zainab M. Shikhamirova

Dagestan State University

Email: 7101986zainab@mail.ru
graduate student of the Faculty of Biology

Shamil I. Chalabov

Dagestan State University

Email: biowulf05@gmail.com
graduate student of the Faculty of Biology

Alexey G. Tyrkov

Astrakhan State University

Email: tyrkov@rambler.ru
Dean of the Faculty of Chemistry, Professor of the Department of Organic, Inorganic and Pharmaceutical Chemistry

Madina M. Gazimagomedova

Dagestan State Medical University

Email: m.dgma@mail.ru
Dean of the Faculty of Pharmacy, Associate Professor of the Department of General and Biological Chemistry

References

  1. Великородов А.В., Ковалев В.Б., Тырков А.Г., Дегтярев О.В. Изучение химического состава и противогрибковой активности эфирного масла Lophantus anisatum Benth. Химия растительного сырья.,2010; 2: 143-6.
  2. Чумакова В.В., Попова О.И. Лофант анисовый (Agastache Foeniculum L.) - перспективный источник получения лекарственных средств. Фармация и фармакология, 2013; 1: 41-6.
  3. Yurtaeva E.A., Remesova I.P., Luzhova S.A., Tyrkov A.G. The method for producing and chemical compensation extractives from Lophantus anisatum Benth. Int. Cnof. «Renewable plant resources: chemistry, technology, medicine». Saint Petersburg, 2017; 165-6.
  4. Рыбак О., Гудзь Н., Свиденко Л. и др. Роль растительных адаптогенов и иммуномодуляторов в диетическом питании и фитотерапии. Agrobiodiversity, 2017; 179-87. https://doi. org/10.15414/agrobiodiversity.2017.2585-8246
  5. Хлебцова Е.Б., Самотруева М.А., Магомедов М.М. и др. Иммунотропные свойства флавоноидов лофанта анисового. Фармация, 2012; 3: 46-8.
  6. Котюк Л.А. Вивчення антимтробно'Т активност етанольного екстракту Lophanthus Anisatus Adans (Lamiaceae). Вкник ЛНУ iменi Тараса Шевченка. ч. I., 2014; 10 (293): 53-61.
  7. Хлебцова Е.Б., Сорокина А.А., Сережникова Т.К., Турченков С.С. Лофант анисовый в комплексной терапии хронических заболеваний легких. Фармация, 2017; 66 (8 ): 45-8.
  8. Чумакова В.В., Попова О.И., Кодониди М.И. Изучение антиоксидантной активности извлечений травы лофанта анисового. Вопросы биологической, медицинской и фармацевтической химии, 2012; 12: 30-3.
  9. Тырков А.Г., Самотруева М.А., Прилучный С.В., Иглина Э.М., Хлебцова Е.Б. Способ получения иммунотропного средства как основы для препарата «Иммунофлан». Патент РФ № 249194. Опубл. БИ № 25 от 10.9.2013 г.
  10. Липунова Е.А., Скоркина М.Ю. К методике определения цитокинетических показателей эритроцитарного баланса крови птиц. Научные ведомости Белгородского государственного университета. Серия: Естественные науки, 2007; 5 (5): 65-8.
  11. Кличханов Н.К., Исмаилова Ж.Г., Астаева М.Д. Свободно-радикальные процессы в биологических системах. Махачкала: Изд. ДГУ, 2012; 188.
  12. Арутюнян А.В., Дубинина Е.Е., Зыбина Н.Н. Методы оценки свободно-радикального окисления и антиоксидантной системы организма. Методические рекомендации. СПб.: ИКФ «Фолиант», 2000; 104.
  13. Сирота Т.В. Использование нитросинего тетразолия в реакции автоокисления адреналина для определения активности супероксиддисмутазы. Биомедицинская химия, 2013; 59 (4): 399-410.
  14. Aebi H. Catalase in vitro. Method. Enzymol., 1984; 105: 121-6. https://doi.org/10.1016/S0076-6879(84)05016-3
  15. Дубинина E.E., Пустыгина А.В. Окислительная модификация протеинов, ее роль при патологических состояниях. Укр. б^м. журн., 2008; 80 (6): 5-18.
  16. Ferrali M., Signorini C., Caciotti B. et al. Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Lett., 1997; 416: 123-9. https://doi.org/10.1016/S0014-5793(97)01182-4.
  17. Тарун Е.И. Сравнение антиоксидантной активности галловой, кофейной и хлорогеновой кислот. Труды БГУ, 2014; 9 (1): 186-191.
  18. Neelam S., Kakhniashvili D.G., Wilkens S. et al. Functional 20S proteasomes in mature human red blood cells. Exp. Biol. Med., 2011; 236 (5): 580-91. https://doi.org/10.1258/ ebm.2011.010394
  19. Jung U.J., Lee M.-K., Park Y.B. et al. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J. of Pharmacol. and Exper. Therapeutics, 2006; 318 (2): 476-83.
  20. Mohanty J.G., Nagababu E., Rifkind J.M. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front. Physiol., 2014; 5 (84): 100-5. https://doi. org/10.3389/fphys.2014.00084

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies