The study of technological properties and biopharmaceutical solubility of phenyltetrahydroquinolinedione derivative with TRPA1-antagonistic activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. In accordance with the principles described in ICH Q8 guideline, the critical characteristics of the components of a dosage form that can affect its quality should be studied before the serial production of a drug. Such parameters include technological properties and biopharmaceutical solubility of an active pharmaceutical ingredient. Objective: to investigate the technological properties and biopharmaceutical solubility of the original substance of a phenyltetrahydroquinolinedione derivative - TRPA1 antagonist in order to develop a solid dosage form based on it. Material and methods. Flowability and angle of repose were determined using an Erweka GTL flow tester. The bulk volume before and after compaction was determined using an ETD-1020 bulk density tester. Equilibrium biopharmaceutical solubility was determined using dissolution tester DT 626/1000 HH. The dissolved quantity of the substance was determined using Agilent 8453 UV spectrophotometer. Results. The flowability was 18.68±1.15 g/s (25 mm funnel); the angle of repose was 46.37±2.04°, the compressibility index and the Hausner ratio were 31.83±1,33% and 1.47±0,09 units, respectively. The calculated therapeutic dose did not completely dissolve in 250 ml of the medium at any pH value. The biopharmaceutical solubility at pH 1.2 was 26.64±1.36 |ig/ml, at pH 4.5 - 2.72±0.15 |ig/ml, at pH 6.8 - 3.8±0.21 |ig/ml. Conclusion. According to the results the following conclusions can be made: it is necessary to use the granulation method or to use the excipients for direct compression; the dissolution profile of the substance allows us to attribute it to class II or IV of the biopharmaceutical classification system, so the development of the dosage form of this substance should be aimed at increasing its solubility or solubility and permeability.

Full Text

Restricted Access

About the authors

Natal'ya Valer'evna Pyatigorskaya

Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: pyatigorskaya_n_v@staff.sechenov.ru
Doctor of Pharmaceutical Sciences, Professor, Deputy Director of the Institute of Translational Medicine and Biotechnology, Head of the Department of Industrial Pharmacy, Institute of Vocational Education

Natal'ya Sergeevna Nikolenko

Sechenov First Moscow State Medical University (Sechenov University)

Email: nikolenko_n_s@staff.sechenov.ru
Candidate of Pharmaceutical Sciences, senior lecturer, Department of Industrial Pharmacy, Institute of Vocational Education

Aleksei Dmitrievich Kravchenko

Sechenov First Moscow State Medical University (Sechenov University)

Email: aleksej_kravchenko97@mail.ru
post-graduate student of the Department of Industrial Pharmacy, Institute of Vocational Education

References

  1. ICH guideline Q8 (R2) on pharmaceutical development. [Electronic resource]. Access mode: https://www.ema.europa.eu/en/ich-q8-r2-pharmaceutical-development
  2. Бесхмельницына Е.А., Покровский М.В., Должиков А.А. и др. Исследование анальгетической и противовоспалительной активности нового неопиоидного анальгетика на основе селективного ингибитора ионных каналов TRPA1. Кубанский научный медицинский вестник. 2019; 26 (1): 77-87.
  3. Chaurasia G. A review on pharmaceutical preformulation studies in formulation and development of new drug molecules. International J. of Pharmaceutical Science and research. 2016; 7 (6): 2313-20. doi: 10.13040/IJPSR.0975-8232.7(6).2313-20
  4. Benet L.Z. The Role of BCS (Biopharmaceutics Classification System) and BDDCS (Biopharmaceutics Drug Disposition Classification System) in Drug Development. J. of Pharmaceutical Sciences. 2013; 102 (1): 34-42. DOI: 10.1002/ jps.23359
  5. Yasir M., Asif M., Kumar A. et al. Biopharmaceutical classification system. International J. of PharmTech Research. 2010; 2 (3): 1681-90.
  6. Chavda H.V., Patel C.N., Anand I.S. Biopharmaceutics classification system. Systematic Reviews in Pharmacy. 2010; 1 (1): 62-9. doi: 10.4103/0975-8453.59514
  7. Шохин И.Е., Раменская Г.В., Кулинич Ю.И. и др. Определение равновесной биофармацевтической растворимости на примере пироксикама. Биофармацевтический журнал. 2011; 3 (3): 39-42.
  8. Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. [Electronic resource]. Available at: http://resource.nlm.nih.gov/101720038
  9. ICH M9 on biopharmaceutics classification system based biowaivers. [Electronic resource]. Access mode: https://www.ema.europa.eu/en/ich-m9-biopharmaceutics-classification-sys-tem-based-biowaivers
  10. Кравченко А.Д. Обоснование начальной дозы нового антагониста TRPA1 - производного фенилтетрагидрохинолиндиона для клинических исследований. Инновационные исследования: теоретические основы и практическое применение: сборник статей по итогам Всероссийской научно-практической конференции. Уфа, 2021; 62-5.
  11. Kravchenko A.D., Pyatigorskaya N.V., Brkich G.E. et al. Synthesis, molecular docking, ADMET study and in vitro pharmacological research of 7-(2-chlorophenyl)-4-(4-methylthiazol-5-yl)-4,6,7,8-tetrahydroquinoline-2,5(1H,3H)-dione as a promising non-opioid analgesic drug. Research Results in Pharmacology. 2021; 8 (1): 1-11. doi: 10.3897/rrpharmacology.8.8050

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The structure of the API

Download (14KB)
3. Fig. 2. Typical UV spectrum of the API at 0.004 mg/ml concentration (0X – wavelength, nm; 0Y – absorbance)

Download (27KB)
4. Fig. 3. Calibration plots for three dissolution media

Download (28KB)
5. Fig. 4. API dissolution curves in three media

Download (29KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies