Solid-phase product based on dihydroquercetin and glycine: preparation and physico-chemical properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Alzheimer's disease is the most common cause of dementia and imposes a heavy financial burden on society in developed countries. According to scientific information, flavonoids prevent the formation of β-amyloid plaques and tau aggregates, proteins that play a key role in the pathogenesis of Alzheimer's disease. To overcome the biopharmaceutical limitations of flavonoids, it is proposed to obtain crystals with amino acids. Assuming a possible pharmacological synergism, the amino acid glycine, which is also capable of influencing links in the biochemical mechanisms of neurodegenerative diseases, was chosen as a conformer to dihydroquercetin flavanonol.

Objective is to obtain and to characterize a solid-phase product of dihydroquercetin and glycine.

Material and methods. The dihydroquercetin-glycine composition was obtained by lyophilization of their aqueous solution. The morphology was characterized by scanning electron microscopy. The crystallinity was demonstrated by X-ray powder diffraction spectra. The thermal analysis was performed by differential scanning calorimetry and thermogravimetry. The solubility in water was evaluated, according to SP RF XV.

Results. Lyophilizate is a light-yellow powder. The form of these particles is thin flakes with a perforated surface, which have a significantly lower degree of crystallinity compared to the initial components. Crystallization of the amorphous flavonoid impurity in the composition is not observed, but we can see the phase transition from γ-glycine to α-glycine. According to SP RF XV, the solubility of resulting product is more than raw dihydroquercetin.

Conclusion. The solid monophase dihydroquercetin-glycine system can be used to develop a new dosage form “Lyophilizate” (SP RF XV, PM.1.4.1.0031) and further preclinical study of safety and efficacy of neurodegenerative diseases.

Full Text

Restricted Access

About the authors

Denis Igorevich Pankov

I.M. Sechenov First Moscow State Medical University of the Ministry of Health f the Russian Federation (Sechenov University)

Author for correspondence.
Email: pankov_d_i@staff.sechenov.ru
ORCID iD: 0009-0007-6195-6400

Postgraduate Student, Assistant of the Chemistry Department of A.P. Nelyubin Institute of Pharmacy

Russian Federation, Trubetskaya str., 8/2, Mosсow, 119048

Roman Petrovich Terekhov

I.M. Sechenov First Moscow State Medical University of the Ministry of Health f the Russian Federation (Sechenov University)

Email: terekhov_r_p@staff.sechenov.ru
ORCID iD: 0000-0001-9206-8632

PhD in Pharmaceutical Sciences, Associate Professor, Department of Chemistry A.P. Nelyubin Institute of Pharmacy

Russian Federation, Trubetskaya str., 8/2, Mosсow, 119048

Anton Albertovich Rakhimov

I.M. Sechenov First Moscow State Medical University of the Ministry of Health f the Russian Federation (Sechenov University)

Email: rakhimov_a_a@student.sechenov.ru
ORCID iD: 0009-0009-4400-2976

Student at the A.P. Nelyubin Institute of Pharmacy

Russian Federation, Trubetskaya str., 8/2, Mosсow, 119048

Alexander Vladimirovich Dzuban

Lomonosov Moscow State University, Department of Chemistry

Email: dzubanav@my.msu.ru
ORCID iD: 0000-0003-3685-0528

Senior Lecturer, Department of Physical Chemistry, Faculty of Chemistry

Russian Federation, Leninskiye gory 1–3, Moscow, 119991

Andrey Nikolaevich Utenyshev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: uten@icp.ac.ru
ORCID iD: 0000-0002-4170-9951

Senior Researcher, Laboratory of Structural Chemistry, Department of Structure of Matter

Russian Federation, Chernogolovka

Gennadii Victorovich Shilov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: genshil@icp.ac.ru
ORCID iD: 0000-0001-5279-7283

Senior Researcher, Laboratory of Structural Chemistry, Department of Structure of Matter

Russian Federation, Chernogolovka

Irina Anatolyevna Selivanova

I.M. Sechenov First Moscow State Medical University of the Ministry of Health f the Russian Federation (Sechenov University)

Email: selivanova_i_a@staff.sechenov.ru
ORCID iD: 0000-0002-2244-445X

Doctor of Pharmaceutical Sciences, Professor, Professor of the Department of Chemistry, Nelyubin Institute of Pharmacy

Russian Federation, Trubetskaya str., 8/2, Mosсow, 119048

References

  1. Brookmeyer R., Johnson E., Ziegler-Graham K., Arrighi H.M. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007; 3 (3): 186–91. doi: 10.1016/j.jalz.2007.04.381
  2. Meek P.D., McKeithan E.K., Schumock G.T. Economic considerations in Alzheimer’s disease. Pharmacother J Hum Pharmacol Drug Ther. 1998; 18 (2P2): 68–73. doi: 10.1002/j.1875-9114.1998.tb03880.x
  3. Hardy J., Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991; 12: 383–8. doi: 10.1016/0165-6147(91)90609-V
  4. Goedert M., Spillantini M.G., Crowther R.A. Tau proteins and neurofibrillary degeneration. Brain Pathol. 1991; 1 (4): 279–86. doi: 10.1111/j.1750-3639.1991.tb00671.x
  5. Huang L.K., Kuan Y.C., Lin H.W., Hu C.J. Clinical trials of new drugs for Alzheimer disease: a 2020–2023 update. J. Biomed Sci. 2023; 30 (1): 83. doi: 10.1186/s12929-023-00976-6
  6. Das S., Nahar L., Nath R., Nath D., Sarker S.D., Talukdar A.D. Neuroprotective natural products. Annu Rep Med Chem. 2020; 55: 179–206. doi: 10.1016/bs.armc.2020.02.009
  7. Uddin M.S., Kabir M.T., Niaz K., Jeandet P., Clément C., Mathew B, Rauf A. et al. Molecular insight into the therapeutic promise of flavonoids against Alzheimer’s disease. Molecules. 2020; 25 (6): 1267. doi: 10.3390/molecules25061267
  8. Onozuka H., Nakajima A., Matsuzaki K., Shin R.W., Ogino K., Saigusa D., Tetsu N. et al. Nobiletin, a citrus flavonoid, improves memory impairment and Aβ pathology in a transgenic mouse model of Alzheimer’s disease. J Pharmacol Exp Ther. 2008; 326 (3): 739–44. doi: 10.1124/jpet.108.140293
  9. Rezai-Zadeh K., Shytle R.D., Bai Y., Tian J., Hou H., Mori T., Zeng J. et al. Flavonoid-mediated presenilin-1 phosphorylation reduces Alzheimer’s disease β-amyloid production. J Cell Mol Med. 2009; 13 (3): 574–88. doi: 10.1111/j.1582-4934.2008.00344.x
  10. Shimmyo Y., Kihara T., Akaike A., Niidome T., Sugimoto H. Epigallocatechin-3-gallate and curcumin suppress amyloid beta-induced beta-site APP cleaving enzyme-1 upregulation. NeuroReport. 2008; 19 (13): 1329–33. doi: 10.1097/WNR.0b013e32830b8ae1
  11. Hirohata M., Hasegawa K., Tsutsumi-Yasuhara S., Ohhashi Y., Ookoshi T., Ono K., Yamada M. et al. The anti-amyloidogenic effect is exerted against Alzheimer’s β-amyloid fibrils in vitro by preferential and reversible binding of flavonoids to the amyloid fibril structure. Biochemistry. 2007; 46 (7): 1888–99. doi: 10.1021/bi061540x
  12. Ono K., Hamaguchi T., Naiki H., Yamada M. Anti-amyloidogenic effects of antioxidants: Implications for the prevention and therapeutics of Alzheimer’s disease. Biochim Biophys Acta BBA – Mol Basis Dis. 2006; 1762 (6): 575–86. doi: 10.1016/j.bbadis.2006.03.002
  13. Rezai-Zadeh K., Arendash G.W., Hou H., Fernandez F., Jensen M., Runfeldt M., Shytle R.D. et al. Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res. 2008; 1214: 177–87. doi: 10.1016/j.brainres.2008.02.107
  14. Gong E.J., Park H.R., Kim M.E., Piao S., Lee E., Jo D.G., Chung H.Y. et al. Morin attenuates tau hyperphosphorylation by inhibiting GSK3β. Neurobiol Dis. 2011; 44 (2): 223–30. doi: 10.1016/j.nbd.2011.07.005
  15. Qin L., Zhang J., Qin M. Protective effect of cyanidin 3-O-glucoside on beta-amyloid peptide-induced cognitive impairment in rats. Neurosci Lett. 2013; 534: 285–8. doi: 10.1016/j.neulet.2012.12.023
  16. Селиванова И.А., Терехов Р.П. Инженерия кристаллов как научная основа модификации физико-химических свойств биофлавоноидов. Известия Академии Наук Серия Химическая. 2019; 12: 2155–62. [Selivanova I.A., Terekhov R.P. Crystal engineering as a scientific basis for modification of physicochemical properties of bioflavonoids. Izvestiya Akademii Nauk Seriya Himicheskaya. 2019; 12: 2155-62. (in Russian)]
  17. Terekhov R.P., Selivanova I.A., Tyukavkina N.A., Shylov G.V., Utenishev A.N., Porozov Y.B. Taxifolin tubes: crystal engineering and characteristics. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater. 2019; 75 (2): 175–82. doi: 10.1107/S2052520619000969
  18. Свотин А.А., Никитин И.Д., Терехов Р.П., Селиванова И.А. Пленки дигидрокверцетина: получение и свойства. Материалы 5-ой Российской конференции по медицинской химии с международным участием. 2021; 406. doi: 10.19163/MedChemRussia2021-2021-406. [Svotin A.A., Nikitin I.D., Terekhov R.P., Selivanova I.A. Dihydroquercetin films: preparation and properties. Materialy 5-oj Rossijskoj konferencii po medicinskoj himii s mezhdunarodnym uchastiem. 2021; 406. doi: 10.19163/MedChemRussia2021-2021-406 (in Russian)]
  19. Kassem F.A., Abdelaziz A.E., El Maghraby G.M. Ethanol-assisted kneading of apigenin with arginine for enhanced dissolution rate of apigenin: development of rapidly disintegrating tablets. Pharm Dev Technol. 2021; 26 (6): 693–700. doi: 10.1080/10837450.2021.1922441
  20. Makadia J., Seaton C.C., Li M. Apigenin cocrystals: from computational prescreening to physicochemical property characterization. Cryst Growth Des. 2023; 23 (5): 3480–95. doi: 10.1021/acs.cgd.3c00030
  21. Zhang Z., Li D., Luo C., Huang C., Qiu R., Deng Z., Zhang H. Cocrystals of natural products: improving the dissolution performance of flavonoids using betaine. Cryst Growth Des. 2019; 19 (7): 3851–9. doi: 10.1021/acs.cgd.9b00294
  22. He H., Huang Y., Zhang Q., Wang J.R., Mei X. Zwitterionic cocrystals of flavonoids and proline: solid-state characterization, pharmaceutical properties, and pharmacokinetic performance. Cryst Growth Des. 2016; 16 (4): 2348–56. doi: 10.1021/acs.cgd.6b00142
  23. Jangid A.K., Jain P., Medicherla K., Pooja D., Kulhari H. Solid-state properties, solubility, stability and dissolution behaviour of co-amorphous solid dispersions of baicalin. CrystEngComm. 2020; 22 (37): 6128–36. doi: 10.1039/D0CE00750A
  24. Tokunaga S., Uchikoshi C., Hayashi K., Suzuki H., Ito M., Noguchi S. Novel pharmaceutical cocrystals and solvate crystals of nobiletin, a citrus flavonoid with potent pharmacological activity. Chem Pharm Bull. 2023; 71 (8): 633–40. doi: 10.1248/cpb.c23-00109
  25. Garbiec E., Rosiak N., Zalewski P., Tajber L., Cielecka-Piontek J. Genistein co-amorphous systems with amino acids: an investigation into enhanced solubility and biological activity. Pharmaceutics. 2023; 15 (12): 2653. doi: 10.3390/pharmaceutics15122653
  26. Minode M, Kadota K, Kawabata D, Yoshida M, Shirakawa Y. Enhancement in dissolution behavior and antioxidant capacity of quercetin with amino acids following radical formation via mechanochemical technique. Adv Powder Technol. 2022; 33 (5): 103582. doi: 10.1016/j.apt.2022.103582
  27. Mishra M., Agrawal S., Bahadur P., Tiwari S. Effect of stoichiometry upon the characteristics of quercetin-arginine cocrystals formulated through solution crystallization. Drug Dev Ind Pharm. 2024; 50 (2): 163–72. doi: 10.1080/03639045.2024.2306281
  28. Hatwar P., Pathan I.B., Chishti N.A.H., Ambekar W. Pellets containing quercetin amino acid co-amorphous mixture for the treatment of pain: formulation, optimization, in-vitro and in-vivo study. J. Drug Deliv Sci Technol. 2021; 62: 102350. doi: 10.1016/j.jddst.2021.102350
  29. Veverka M., Dubaj T., Gallovič J., Jorík V., Veverková E., Danihelová M., Šimon P. Cocrystals of quercetin: synthesis, characterization, and screening of biological activity. Monatshefte Für Chem – Chem Mon. 2015; 146 (1): 99–109. DOI: org/10.1007/s00706-014-1314-6
  30. Dias J.L., Rebelatto E.A., Lanza M., Ferreira S.R.S. Production of quercetin-proline cocrystals by means of supercritical CO2 antisolvent. Adv Powder Technol. 2023; 34 (11): 104222. doi: 10.1016/j.apt.2023.104222
  31. Fujioka S., Kadota K., Yoshida M., Shirakawa Y. Improvement in the elution behavior of rutin via binary amorphous solid with flavonoid using a mechanochemical process. Food Bioprod Process. 2020; 123: 274–83. doi: 10.1016/j.fbp.2020.07.007
  32. Liu M., Hong C., Yao Y., Shen H., Ji G., Li G., Xie Y. Development of a pharmaceutical cocrystal with solution crystallization technology: preparation, characterization, and evaluation of myricetin-proline cocrystals. Eur J Pharm Biopharm. 2016; 107: 151–9. doi: 10.1016/j.ejpb.2016.07.008
  33. Elshaer M., Osman S.k., Mohammed A.M., Zayed G. Co-crystallization of hesperidin with different co-formers to enhance solubility, antioxidant and anti-inflammatory activities. Pharm Dev Technol. 2024; 29 (7): 691–702. doi: 10.1080/10837450.2024.2378498
  34. Cui W., He Z., Zhang Y., Fan Q., Feng N. Naringenin cocrystals prepared by solution crystallization method for improving bioavailability and anti-hyperlipidemia effects. AAPS PharmSciTech. 2019; 20 (3): 115. doi: 10.1208/s12249-019-1324-0
  35. Yang R., Yang X., Zhang F. New perspectives of taxifolin in neurodegenerative diseases. Curr Neuropharmacol. 2023; 21 (10): 2097–109. doi: 10.2174/1570159X21666230203101107
  36. Коротеев А.М., Казиев Г.З., Коротеев М.П., Степнова А.Ф., Поздеев А.О., Зинченко В.П., Сергеев А.И. и др. Трансформация гидрофобных флавоноидов катехина, дигидрокверцетина и кверцетина в водорастворимые структуры. Бутлеровские сообщения. 2020; 64 (10): 14–21. doi: 10.37952/ROI-jbc-01/20-64-10-14 [Koroteev A.M., Kaziev G.Z., Koroteev M.P., Stepanova A.F., Pozdeev A.O., Zinchenko V.P., Sergeev A.I. et al. Transformation of hydrophobic flavonoids catechin, dihydroquercetin and quercetin into water-soluble structures. Butlerovskie soobshcheniya. 2020; 64 (10): 14–21. doi: 10.37952/ROI-jbc-01/20-64-10-14 (in Russian)]
  37. Ullah R., Jo M.H., Riaz M., Alam S.I., Saeed K., Ali W., Rehman I.U. et al. Glycine, the smallest amino acid, confers neuroprotection against D-galactose-induced neurodegeneration and memory impairment by regulating c-Jun N-terminal kinase in the mouse brain. J. Neuroinflammation. 2020; 17(1): 303. doi: 10.1186/s12974-020-01989-w
  38. Srinivasan K. Crystal growth of α and γ glycine polymorphs and their polymorphic phase transformations. J. Cryst Growth. 2008; 311 (1): 156–62. doi: 10.1016/j.jcrysgro.2008.10.084

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The product of co-crystallization at the interface of phases: a) appearance, б) radiograph

Download (47KB)
3. Fig. 2. Morphology of the solid phase: a) DHQ (×500), б) glycine (×500), в) the product of mechanoactivation (×500)

Download (349KB)
4. Fig. 3. Morphology of DHQ-glycine lyophilizate (×30)

Download (349KB)
5. Fig. 4. Morphology of the solid phase: a) DHQ-glycine lyophilizate (×500), б) DHQ-glycine lyophilizate (×2000), в) DHQ lyophilizate (×500), г) glycine lyophilizate (×500)

Download (426KB)
6. Fig. 5. Diffractograms: a) DHQ-glycine lyophilizate, б) product of mechanoactivation, в) DHQ lyophilizate, г) glycine lyophilizate

Download (78KB)
7. Fig. 6. Thermograms obtained by differential scanning calorimetry: a) DHQ lyophilizate, б) glycine, в) DHQ-glycine lyophilizate

Download (59KB)
8. Fig. 7. Thermograms obtained by thermogravimetry: a) DHQ-glycine lyophilizate, б) mechanoactivation product

Download (46KB)

Copyright (c) 2025 Russkiy Vrach Publishing House