Solid-phase product based on dihydroquercetin and glycine: preparation and physico-chemical properties
- Authors: Pankov D.I.1, Terekhov R.P.1, Rakhimov A.A.1, Dzuban A.V.2, Utenyshev A.N.3, Shilov G.V.3, Selivanova I.A.1
-
Affiliations:
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health f the Russian Federation (Sechenov University)
- Lomonosov Moscow State University, Department of Chemistry
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
- Issue: Vol 74, No 5 (2025)
- Pages: 12-20
- Section: Pharmaceutical chemistry and pharmacognosy
- URL: https://journals.eco-vector.com/0367-3014/article/view/689543
- DOI: https://doi.org/10.29296/25419218-2025-05-02
- ID: 689543
Cite item
Abstract
Introduction. Alzheimer's disease is the most common cause of dementia and imposes a heavy financial burden on society in developed countries. According to scientific information, flavonoids prevent the formation of β-amyloid plaques and tau aggregates, proteins that play a key role in the pathogenesis of Alzheimer's disease. To overcome the biopharmaceutical limitations of flavonoids, it is proposed to obtain crystals with amino acids. Assuming a possible pharmacological synergism, the amino acid glycine, which is also capable of influencing links in the biochemical mechanisms of neurodegenerative diseases, was chosen as a conformer to dihydroquercetin flavanonol.
Objective is to obtain and to characterize a solid-phase product of dihydroquercetin and glycine.
Material and methods. The dihydroquercetin-glycine composition was obtained by lyophilization of their aqueous solution. The morphology was characterized by scanning electron microscopy. The crystallinity was demonstrated by X-ray powder diffraction spectra. The thermal analysis was performed by differential scanning calorimetry and thermogravimetry. The solubility in water was evaluated, according to SP RF XV.
Results. Lyophilizate is a light-yellow powder. The form of these particles is thin flakes with a perforated surface, which have a significantly lower degree of crystallinity compared to the initial components. Crystallization of the amorphous flavonoid impurity in the composition is not observed, but we can see the phase transition from γ-glycine to α-glycine. According to SP RF XV, the solubility of resulting product is more than raw dihydroquercetin.
Conclusion. The solid monophase dihydroquercetin-glycine system can be used to develop a new dosage form “Lyophilizate” (SP RF XV, PM.1.4.1.0031) and further preclinical study of safety and efficacy of neurodegenerative diseases.
Keywords
Full Text

About the authors
Denis Igorevich Pankov
I.M. Sechenov First Moscow State Medical University of the Ministry of Health f the Russian Federation (Sechenov University)
Author for correspondence.
Email: pankov_d_i@staff.sechenov.ru
ORCID iD: 0009-0007-6195-6400
Postgraduate Student, Assistant of the Chemistry Department of A.P. Nelyubin Institute of Pharmacy
Russian Federation, Trubetskaya str., 8/2, Mosсow, 119048Roman Petrovich Terekhov
I.M. Sechenov First Moscow State Medical University of the Ministry of Health f the Russian Federation (Sechenov University)
Email: terekhov_r_p@staff.sechenov.ru
ORCID iD: 0000-0001-9206-8632
PhD in Pharmaceutical Sciences, Associate Professor, Department of Chemistry A.P. Nelyubin Institute of Pharmacy
Russian Federation, Trubetskaya str., 8/2, Mosсow, 119048Anton Albertovich Rakhimov
I.M. Sechenov First Moscow State Medical University of the Ministry of Health f the Russian Federation (Sechenov University)
Email: rakhimov_a_a@student.sechenov.ru
ORCID iD: 0009-0009-4400-2976
Student at the A.P. Nelyubin Institute of Pharmacy
Russian Federation, Trubetskaya str., 8/2, Mosсow, 119048Alexander Vladimirovich Dzuban
Lomonosov Moscow State University, Department of Chemistry
Email: dzubanav@my.msu.ru
ORCID iD: 0000-0003-3685-0528
Senior Lecturer, Department of Physical Chemistry, Faculty of Chemistry
Russian Federation, Leninskiye gory 1–3, Moscow, 119991Andrey Nikolaevich Utenyshev
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: uten@icp.ac.ru
ORCID iD: 0000-0002-4170-9951
Senior Researcher, Laboratory of Structural Chemistry, Department of Structure of Matter
Russian Federation, ChernogolovkaGennadii Victorovich Shilov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: genshil@icp.ac.ru
ORCID iD: 0000-0001-5279-7283
Senior Researcher, Laboratory of Structural Chemistry, Department of Structure of Matter
Russian Federation, ChernogolovkaIrina Anatolyevna Selivanova
I.M. Sechenov First Moscow State Medical University of the Ministry of Health f the Russian Federation (Sechenov University)
Email: selivanova_i_a@staff.sechenov.ru
ORCID iD: 0000-0002-2244-445X
Doctor of Pharmaceutical Sciences, Professor, Professor of the Department of Chemistry, Nelyubin Institute of Pharmacy
Russian Federation, Trubetskaya str., 8/2, Mosсow, 119048References
- Brookmeyer R., Johnson E., Ziegler-Graham K., Arrighi H.M. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007; 3 (3): 186–91. doi: 10.1016/j.jalz.2007.04.381
- Meek P.D., McKeithan E.K., Schumock G.T. Economic considerations in Alzheimer’s disease. Pharmacother J Hum Pharmacol Drug Ther. 1998; 18 (2P2): 68–73. doi: 10.1002/j.1875-9114.1998.tb03880.x
- Hardy J., Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991; 12: 383–8. doi: 10.1016/0165-6147(91)90609-V
- Goedert M., Spillantini M.G., Crowther R.A. Tau proteins and neurofibrillary degeneration. Brain Pathol. 1991; 1 (4): 279–86. doi: 10.1111/j.1750-3639.1991.tb00671.x
- Huang L.K., Kuan Y.C., Lin H.W., Hu C.J. Clinical trials of new drugs for Alzheimer disease: a 2020–2023 update. J. Biomed Sci. 2023; 30 (1): 83. doi: 10.1186/s12929-023-00976-6
- Das S., Nahar L., Nath R., Nath D., Sarker S.D., Talukdar A.D. Neuroprotective natural products. Annu Rep Med Chem. 2020; 55: 179–206. doi: 10.1016/bs.armc.2020.02.009
- Uddin M.S., Kabir M.T., Niaz K., Jeandet P., Clément C., Mathew B, Rauf A. et al. Molecular insight into the therapeutic promise of flavonoids against Alzheimer’s disease. Molecules. 2020; 25 (6): 1267. doi: 10.3390/molecules25061267
- Onozuka H., Nakajima A., Matsuzaki K., Shin R.W., Ogino K., Saigusa D., Tetsu N. et al. Nobiletin, a citrus flavonoid, improves memory impairment and Aβ pathology in a transgenic mouse model of Alzheimer’s disease. J Pharmacol Exp Ther. 2008; 326 (3): 739–44. doi: 10.1124/jpet.108.140293
- Rezai-Zadeh K., Shytle R.D., Bai Y., Tian J., Hou H., Mori T., Zeng J. et al. Flavonoid-mediated presenilin-1 phosphorylation reduces Alzheimer’s disease β-amyloid production. J Cell Mol Med. 2009; 13 (3): 574–88. doi: 10.1111/j.1582-4934.2008.00344.x
- Shimmyo Y., Kihara T., Akaike A., Niidome T., Sugimoto H. Epigallocatechin-3-gallate and curcumin suppress amyloid beta-induced beta-site APP cleaving enzyme-1 upregulation. NeuroReport. 2008; 19 (13): 1329–33. doi: 10.1097/WNR.0b013e32830b8ae1
- Hirohata M., Hasegawa K., Tsutsumi-Yasuhara S., Ohhashi Y., Ookoshi T., Ono K., Yamada M. et al. The anti-amyloidogenic effect is exerted against Alzheimer’s β-amyloid fibrils in vitro by preferential and reversible binding of flavonoids to the amyloid fibril structure. Biochemistry. 2007; 46 (7): 1888–99. doi: 10.1021/bi061540x
- Ono K., Hamaguchi T., Naiki H., Yamada M. Anti-amyloidogenic effects of antioxidants: Implications for the prevention and therapeutics of Alzheimer’s disease. Biochim Biophys Acta BBA – Mol Basis Dis. 2006; 1762 (6): 575–86. doi: 10.1016/j.bbadis.2006.03.002
- Rezai-Zadeh K., Arendash G.W., Hou H., Fernandez F., Jensen M., Runfeldt M., Shytle R.D. et al. Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res. 2008; 1214: 177–87. doi: 10.1016/j.brainres.2008.02.107
- Gong E.J., Park H.R., Kim M.E., Piao S., Lee E., Jo D.G., Chung H.Y. et al. Morin attenuates tau hyperphosphorylation by inhibiting GSK3β. Neurobiol Dis. 2011; 44 (2): 223–30. doi: 10.1016/j.nbd.2011.07.005
- Qin L., Zhang J., Qin M. Protective effect of cyanidin 3-O-glucoside on beta-amyloid peptide-induced cognitive impairment in rats. Neurosci Lett. 2013; 534: 285–8. doi: 10.1016/j.neulet.2012.12.023
- Селиванова И.А., Терехов Р.П. Инженерия кристаллов как научная основа модификации физико-химических свойств биофлавоноидов. Известия Академии Наук Серия Химическая. 2019; 12: 2155–62. [Selivanova I.A., Terekhov R.P. Crystal engineering as a scientific basis for modification of physicochemical properties of bioflavonoids. Izvestiya Akademii Nauk Seriya Himicheskaya. 2019; 12: 2155-62. (in Russian)]
- Terekhov R.P., Selivanova I.A., Tyukavkina N.A., Shylov G.V., Utenishev A.N., Porozov Y.B. Taxifolin tubes: crystal engineering and characteristics. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater. 2019; 75 (2): 175–82. doi: 10.1107/S2052520619000969
- Свотин А.А., Никитин И.Д., Терехов Р.П., Селиванова И.А. Пленки дигидрокверцетина: получение и свойства. Материалы 5-ой Российской конференции по медицинской химии с международным участием. 2021; 406. doi: 10.19163/MedChemRussia2021-2021-406. [Svotin A.A., Nikitin I.D., Terekhov R.P., Selivanova I.A. Dihydroquercetin films: preparation and properties. Materialy 5-oj Rossijskoj konferencii po medicinskoj himii s mezhdunarodnym uchastiem. 2021; 406. doi: 10.19163/MedChemRussia2021-2021-406 (in Russian)]
- Kassem F.A., Abdelaziz A.E., El Maghraby G.M. Ethanol-assisted kneading of apigenin with arginine for enhanced dissolution rate of apigenin: development of rapidly disintegrating tablets. Pharm Dev Technol. 2021; 26 (6): 693–700. doi: 10.1080/10837450.2021.1922441
- Makadia J., Seaton C.C., Li M. Apigenin cocrystals: from computational prescreening to physicochemical property characterization. Cryst Growth Des. 2023; 23 (5): 3480–95. doi: 10.1021/acs.cgd.3c00030
- Zhang Z., Li D., Luo C., Huang C., Qiu R., Deng Z., Zhang H. Cocrystals of natural products: improving the dissolution performance of flavonoids using betaine. Cryst Growth Des. 2019; 19 (7): 3851–9. doi: 10.1021/acs.cgd.9b00294
- He H., Huang Y., Zhang Q., Wang J.R., Mei X. Zwitterionic cocrystals of flavonoids and proline: solid-state characterization, pharmaceutical properties, and pharmacokinetic performance. Cryst Growth Des. 2016; 16 (4): 2348–56. doi: 10.1021/acs.cgd.6b00142
- Jangid A.K., Jain P., Medicherla K., Pooja D., Kulhari H. Solid-state properties, solubility, stability and dissolution behaviour of co-amorphous solid dispersions of baicalin. CrystEngComm. 2020; 22 (37): 6128–36. doi: 10.1039/D0CE00750A
- Tokunaga S., Uchikoshi C., Hayashi K., Suzuki H., Ito M., Noguchi S. Novel pharmaceutical cocrystals and solvate crystals of nobiletin, a citrus flavonoid with potent pharmacological activity. Chem Pharm Bull. 2023; 71 (8): 633–40. doi: 10.1248/cpb.c23-00109
- Garbiec E., Rosiak N., Zalewski P., Tajber L., Cielecka-Piontek J. Genistein co-amorphous systems with amino acids: an investigation into enhanced solubility and biological activity. Pharmaceutics. 2023; 15 (12): 2653. doi: 10.3390/pharmaceutics15122653
- Minode M, Kadota K, Kawabata D, Yoshida M, Shirakawa Y. Enhancement in dissolution behavior and antioxidant capacity of quercetin with amino acids following radical formation via mechanochemical technique. Adv Powder Technol. 2022; 33 (5): 103582. doi: 10.1016/j.apt.2022.103582
- Mishra M., Agrawal S., Bahadur P., Tiwari S. Effect of stoichiometry upon the characteristics of quercetin-arginine cocrystals formulated through solution crystallization. Drug Dev Ind Pharm. 2024; 50 (2): 163–72. doi: 10.1080/03639045.2024.2306281
- Hatwar P., Pathan I.B., Chishti N.A.H., Ambekar W. Pellets containing quercetin amino acid co-amorphous mixture for the treatment of pain: formulation, optimization, in-vitro and in-vivo study. J. Drug Deliv Sci Technol. 2021; 62: 102350. doi: 10.1016/j.jddst.2021.102350
- Veverka M., Dubaj T., Gallovič J., Jorík V., Veverková E., Danihelová M., Šimon P. Cocrystals of quercetin: synthesis, characterization, and screening of biological activity. Monatshefte Für Chem – Chem Mon. 2015; 146 (1): 99–109. DOI: org/10.1007/s00706-014-1314-6
- Dias J.L., Rebelatto E.A., Lanza M., Ferreira S.R.S. Production of quercetin-proline cocrystals by means of supercritical CO2 antisolvent. Adv Powder Technol. 2023; 34 (11): 104222. doi: 10.1016/j.apt.2023.104222
- Fujioka S., Kadota K., Yoshida M., Shirakawa Y. Improvement in the elution behavior of rutin via binary amorphous solid with flavonoid using a mechanochemical process. Food Bioprod Process. 2020; 123: 274–83. doi: 10.1016/j.fbp.2020.07.007
- Liu M., Hong C., Yao Y., Shen H., Ji G., Li G., Xie Y. Development of a pharmaceutical cocrystal with solution crystallization technology: preparation, characterization, and evaluation of myricetin-proline cocrystals. Eur J Pharm Biopharm. 2016; 107: 151–9. doi: 10.1016/j.ejpb.2016.07.008
- Elshaer M., Osman S.k., Mohammed A.M., Zayed G. Co-crystallization of hesperidin with different co-formers to enhance solubility, antioxidant and anti-inflammatory activities. Pharm Dev Technol. 2024; 29 (7): 691–702. doi: 10.1080/10837450.2024.2378498
- Cui W., He Z., Zhang Y., Fan Q., Feng N. Naringenin cocrystals prepared by solution crystallization method for improving bioavailability and anti-hyperlipidemia effects. AAPS PharmSciTech. 2019; 20 (3): 115. doi: 10.1208/s12249-019-1324-0
- Yang R., Yang X., Zhang F. New perspectives of taxifolin in neurodegenerative diseases. Curr Neuropharmacol. 2023; 21 (10): 2097–109. doi: 10.2174/1570159X21666230203101107
- Коротеев А.М., Казиев Г.З., Коротеев М.П., Степнова А.Ф., Поздеев А.О., Зинченко В.П., Сергеев А.И. и др. Трансформация гидрофобных флавоноидов катехина, дигидрокверцетина и кверцетина в водорастворимые структуры. Бутлеровские сообщения. 2020; 64 (10): 14–21. doi: 10.37952/ROI-jbc-01/20-64-10-14 [Koroteev A.M., Kaziev G.Z., Koroteev M.P., Stepanova A.F., Pozdeev A.O., Zinchenko V.P., Sergeev A.I. et al. Transformation of hydrophobic flavonoids catechin, dihydroquercetin and quercetin into water-soluble structures. Butlerovskie soobshcheniya. 2020; 64 (10): 14–21. doi: 10.37952/ROI-jbc-01/20-64-10-14 (in Russian)]
- Ullah R., Jo M.H., Riaz M., Alam S.I., Saeed K., Ali W., Rehman I.U. et al. Glycine, the smallest amino acid, confers neuroprotection against D-galactose-induced neurodegeneration and memory impairment by regulating c-Jun N-terminal kinase in the mouse brain. J. Neuroinflammation. 2020; 17(1): 303. doi: 10.1186/s12974-020-01989-w
- Srinivasan K. Crystal growth of α and γ glycine polymorphs and their polymorphic phase transformations. J. Cryst Growth. 2008; 311 (1): 156–62. doi: 10.1016/j.jcrysgro.2008.10.084
Supplementary files
