Effect of taste receptor protein T1R3 on the development of islet tissue of the murine pancreas

Cover Page

Cite item

Full Text

Abstract

Protein T1R3, the main subunit of sweet, as well as amino acid, taste receptor, is expressed in the epithelium of the tongue and gastro intestinal tract, in β–cells of the pancreas, hypothalamus, and numerous other organs. Recently, convincing witnesses of T1R3 involvement in control of carbohydrate and lipid metabolism, and control of production of incretines and insulin, have been determined. In the study on Tas1r3-gene knockout mouse strain and parent strain C57Bl/6J as control, priority data concerning the effect of T1R3 on the morphological characteristics of Langerhans islets in the pancreas, are obtained. In Tas1r3 knockout animals, it is found that the size of the islets and their density in pancreatic tissue are reduced, as compared to the parent strain. Additionally, a decrease of expression of active caspase-3 in islets of gene-knockouts is demonstrated. The obtained data show that the lack of a functional, gene encoding sweet-taste receptor protein causes a dystrophy of the islet tissue and associates to the development of pathological changes in the pancreas specific to type-2 diabetes and obesity in humans.

About the authors

V. O. Murovets

Pavlov Institute of Physiology of the Russian Academy of Sciences

Author for correspondence.
Email: murovetsvo@infran.ru
Russian Federation, 6, Makarova street, St.Petersburg, 199034

E. A. Sozontov

Pavlov Institute of Physiology of the Russian Academy of Sciences; Saint-Petersburg State University

Email: murovetsvo@infran.ru
Russian Federation, 6, Makarova street, St.Petersburg, 199034; 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

T. G. Zachepilo

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: murovetsvo@infran.ru
Russian Federation, 6, Makarova street, St.Petersburg, 199034

References

  1. Damak S., Rong M., Yasumatsu K., Kokrashvili Z., Varadarajan V., Zou S., Jiang P., Ninomiya Y., Margolskee R.F. // Science. 2003. V. 301. № 5634. P. 850–853.
  2. Laffitte A., Neiers F., Briand L. // Curr. Opin. Clin. Nutr. Metab. Care. 2014. V. 17. № 4. P. 379–385.
  3. Муровец В.О., Бачманов А.А., Травников С.В., Чурикова А.А., Золотарев В.А. // Журн. эволюц. биохимии и физиологии. 2014. Т. 50. № 4. С. 296–304.
  4. Murovets V.O., Bachmanov A.A., Zolotarev V.A. // PLoS ONE. 2015. V. 10. № 6. e0130997.
  5. Kojima I., Medina J., Nakagawa Y. // Diabetes Obes. Metab. 2017. V. 19. Suppl. 1. P. 54–62.
  6. Муровец В.О., Созонтов Е.А., Андреева Ю.В., Хропычева Р. П., Золотарев В.А. // Рос. физиол. журн. им. И.М. Сеченова. 2016. Т. 102. № 6. С. 668–679.
  7. Masubuchi Y., Nakagawa Y., Medina J., Nagasawa M., Kojima I., Rasenick M.M., Inagaki T., Shibata H. // PLoS ONE. 2017. V. 12. № 5. e0176841.
  8. Linnemann A.K., Baan M., Davis D.B. // Adv. Nutr. 2014. V. 5. № 3. P. 278–288.
  9. Butler A.E., Janson J., Soeller W.C., Butler P.C. // Diabetes 2003. V. 52. № 9. P. 2304–2314.
  10. Katsuda Y., Ohta T., Miyajima K., Kemmochi Y., Sasase T., To B., Shinohara M., Yamada T. // Exp. Anim. 2014. V. 63. № 2. P. 121–132.
  11. Wauson E.M., Zaganjor E., Lee A-Y., Guerra M.L., Ghosh A.B., Bookout A.L., Chambers C.P., Jivan A., McGlynn K., Hutchison M.R., Deberardinis R.J., Cobb M.H. // Mol. Cell. 2012. V. 47. № 6. P. 851–862.
  12. Ding L., Yin Y., Han L., Li Y., Zhao J., Zhang W. // J. Endocrinol. 2017. V. 232. № 1. P. 59–70.
  13. Balcazar N., Sathyamurthy A., Elghazi L., Gould A., Weiss A., Shiojima I., Walsh K., Bernal-Mizrachi E. // J. Biol. Chem. 2009. V. 284. № 12. P. 7832–7842.
  14. Yabe D., Seino Y. // Prog. Biophys. Mol. Biol. 2011. V. 107. № 2. P. 248–256.
  15. Herbach N., Bergmayr M., Goke B., Wolf E., Wanke R. // PLoS ONE. 2011. V. 6. № 7. e22814.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies