Disorder indicator for nonstationary stochastic processes

Cover Page

Cite item

Full Text

Abstract

The properties of a statistic called a self-consistent stationarity level of nonstationary time series are examined in this work. It is shown that a change in this statistic can be treated as a disorder in the nonstationarity properties of the series. The significance level of decision making is estimated, characteristic periods in a non-stationary stochastic process are detected, and an optimal sample size for constructing indicators in stochastic control problems is determined. A disorder indicator for electroencephalogram data from epilepsy patients is studied as a practical application.

About the authors

А. A. Kislitsyn

Institute for Applied Mathematics of the Russian Academy of Sciences

Author for correspondence.
Email: alexey.kislitsyn@gmail.com
Russian Federation, 4, Miusskaya square, Moscow, 125047

A. B. Kozlova

N.N. Burdenko National Scientific and Practical Center for Neurosurgery of the Ministry of Healthcare of the Russian Federation

Email: alexey.kislitsyn@gmail.com
Russian Federation, 16, 4-ya Tverskaya-Yamskaya street, Moscow, 125047

M. B. Korsakova

N.N. Burdenko National Scientific and Practical Center for Neurosurgery of the Ministry of Healthcare of the Russian Federation

Email: alexey.kislitsyn@gmail.com
Russian Federation, 16, 4-ya Tverskaya-Yamskaya street, Moscow, 125047

Yu. N. Orlov

Institute for Applied Mathematics of the Russian Academy of Sciences

Email: alexey.kislitsyn@gmail.com
Russian Federation, 4, Miusskaya square, Moscow, 125047

References

  1. Королюк В.С., Портенко Н.И., Скороход А.В., Турбин А.Ф. Справочник по теории вероятностей и математической статистике. М.: Наука, 1985. 640 с.
  2. Кобзарь А.И. Прикладная математическая статистика. М.: Физматлит, 2006. 816 с.
  3. Орлов Ю.Н. Кинетические методы исследования нестационарных временных рядов. М.: МФТИ, 2014. 276 с.
  4. Нейрофизиологические исследования в клинике / Под ред. Г. А. Щекутьева. М.: Антидор, 2001. 236 с.
  5. Kislitsyn A.A., Kozlova A.B., Masherov E.L., Orlov Yu.N. Numerical Algorithm for Self-Consistent Stationary Level for Multidimensional Non-Stationary Time-Series. Keldysh Inst. Prepr. M., 2017. № 124. 14 p.
  6. The Fourier Transform in Biomedical Engineering. T.M. Peters, J. Williams (Eds.). Basel: Birkhäuser, 1998. 199 p.
  7. Kolmogoroff A.N. Sulla determinazione empirica di una legge di distribuzione // Giornale Ist. Italiano degly Attuari. 1933. V. 4. № 1. P. 83–91.
  8. Гнеденко Б.В. Курс теории вероятностей. М.: Физматлит, 1961. 406 с.
  9. Кислицын А.А., Козлова А.Б., Корсакова М.Б., Машеров Е.Л., Орлов Ю.Н. Стационарная точка уровня значимости для нестационарных функций распределения. Препр. ИПМ им. М.В. Келдыша. М., 2018. № 113. 20 с.
  10. Smolyanov O.G., Weizsacker H., Wittin O. Chernoff’s Theorem and Discrete time Approximation of Brownian Motion on Manifolds // Potential Anal. 2007. V. 26. P. 1–29.
  11. Орлов Ю.Н., Сакбаев В.Ж., Смолянов О.Г. Формулы Фейнмана как метод усреднения случайных гамильтонианов // Тр. Мат. ин-та РАН. 2014. Т. 285. С. 232–243.
  12. Бутко Я.А., Смолянов О.Г. Формулы Фейнмана в стохастической и квантовой динамике. В сб.: Современные проблемы математики и механики. М., 2011. Т. 6. № 1. С. 61–75.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies