Hierarchically structured, highly porous nickel synthesized in sintering–evaporation process from a metal nanopowder and a space holder

Cover Page

Abstract


This paper reports on the creation of a highly porous material with a hierarchical structure using powder metallurgy methods based on nickel nanopowder and ammonium bicarbonate NH4HCO3 as a space holder.


About the authors

A. G. Gnedovets

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences

Author for correspondence.
Email: alymov.mi@gmail.com

Russian Federation, 49, Leninskii Prospect, Moscow, 119334, GSP-1

V. A. Zelenskii

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences

Email: alymov.mi@gmail.com

Russian Federation, 49, Leninskii Prospect, Moscow, 119334, GSP-1

A. B. Ankudinov

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences

Email: alymov.mi@gmail.com

Russian Federation, 49, Leninskii Prospect, Moscow, 119334, GSP-1

M. I. Alymov

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences

Email: alymov.mi@gmail.com

Russian Federation, 49, Leninskii Prospect, Moscow, 119334, GSP-1

Corresponding Member of the RAS

References

  1. Kränzlin N., Niederberger M. Controlled Fabrication of Porous Metals from the Nanometer to the Macroscopic Scale // Materials Horizons. 2015. V. 2. Iss. 4. P. 359–377.
  2. Stanev L., Kolev M., Drenchev B., Drenchev L. Open-Cell Metallic Porous Materials Obtained Through Space Holders. Pt I: Production Methods. A Review // Manufacturing Sci. and Eng. 2017. V. 139. Iss. 5. 050801.
  3. Singh S., Bhatnagar N. A Survey of Fabrication and Application of Metallic Foams (1925–2017) // J. Porous Materials. 2017. V. 24. P. 1–18.
  4. Laptev A., Bram M., Buchkremer H.P., Stöver D. Study of Production Route for Titanium Parts Combining Very High Porosity and Complex Shape // Powder Metallurgy. 2004. V. 47. Iss. 1. P. 85–92.
  5. Zhao Y.Y., Sun D.X. A Novel Sintering-Dissolution Process for Manufacturing Al Foams // Scr. Materialia. 2001. V. 44. V. 1. P. 105–110.
  6. Yuan Z.Y., Su B.L. Insights into Hierarchically Meso-Macroporous Structured Materials // J. Materials Chem. 2006. V. 16. Iss. 7. P. 663–677.
  7. Изаак Т.И., Водянкина О.В. Макропористые монолитные материалы: синтез, свойства, применение // Успехи химии. 2009. Т. 78. № 1. С. 80–92.
  8. Despois J.F., Mortensen A. Permeability of Open-Pore Microcellular Materials // Acta Materialia. 2005. V. 53. Iss. 5. P. 1381–1388.
  9. Gibson L.G., Ashby M.F. Cellular Solids, Structures and Properties. 2nd ed. Cambridge: Cambridge Univ. Press, 1997. 510 p.
  10. Nickel, Cobalt, and Their Alloys / J.R. Davis. Ed. ASM International, 2000. 442 p.
  11. Алымов М.И., Рубцов Н.М., Сеплярский Б.С., Зеленский В.А., Анкудинов А.Б., Ковалев И.Д., Кочетков Р.А., Щукин А.С., Петров Е.В., Кочетов Н.А. Пассивация наночастиц никеля при температурах ниже 0° С // Рос. нанотехнологии. 2017. Т. 12. № 11/12. С. 3–8.
  12. Mondal D.P., Jain H., Das S., Jha A.K. Stainless Steel Foams Made Through Powder Metallurgy Route Using NH4HCO3 as Space Holder // Materials & Design. 2015. V. 88. P. 430–437.
  13. Lakes R. Materials with Structural Hierarchy // Nature. 1993. V. 361. P. 511–515.
  14. Pérez-Ramírez J., Christensen C.H., Egeblad K., Christensen C.H., Groen J.C. Hierarchical Zeolites: Enhanced Utilisation of Microporous Crystals in Catalysis by Advances in Materials Design // Chem. Soc. Rev. 2008. V. 37. Iss. 11. P. 2530–2542.
  15. Алымов М.И. Порошковая металлургия нанокристаллических материалов. М.: Наука, 2007. 168 с.

Statistics

Views

Abstract - 398

PDF (Russian) - 220

PlumX


Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies