Development of an immunosorbent for solid-phase NMR-based assay

Cover Page

Cite item

Full Text

Abstract

The conditions for constructing an immunosorbent reagent for solid-phase NMR analysis were optimized. For this purpose, we increased the area of the sensitized portion of the membrane to fit the relaxometer coil size and added the agent sorption buffer. This provided the penetration of the anti-ligand molecules into the membrane thickness and their uniform distribution.

About the authors

P. V. Khramtsov

Perm Federal Research Center Ural Branch Russian Academy of Sciences; Perm State University

Author for correspondence.
Email: khramtsovpavel@yandex.ru
Russian Federation, Perm

M. D. Kropaneva

Perm Federal Research Center Ural Branch Russian Academy of Sciences

Email: khramtsovpavel@yandex.ru
Russian Federation, Perm

M. S. Bochkova

Perm Federal Research Center Ural Branch Russian Academy of Sciences

Email: khramtsovpavel@yandex.ru
Russian Federation, Perm

V. P. Timganova

Perm Federal Research Center Ural Branch Russian Academy of Sciences

Email: khramtsovpavel@yandex.ru
Russian Federation, Perm

S. A. Zamorina

Perm Federal Research Center Ural Branch Russian Academy of Sciences; Perm State University

Email: khramtsovpavel@yandex.ru
Russian Federation, Perm

M. B. Rayev

Perm Federal Research Center Ural Branch Russian Academy of Sciences; Perm State University

Email: khramtsovpavel@yandex.ru
Russian Federation, Perm

References

  1. Blümich B. Introduction to Compact NMR: A Review of Methods // TrAC — Trends Anal. Chem. 2016. V. 83. P. 2–11.
  2. Luo Z.-X., Fox L., Cummings M., Lowery T.J., Daviso E. New Frontiers in in vitro Medical Diagnostics by Low Field T2 Magnetic Resonance Relaxometry // TrAC — Trends Anal. Chem. 2016. V. 83. P. 94–102.
  3. Chen Y.-T., Kolhatkar A.G., Zenasni O., Xu S., Lee T.R. Biosensing Using Magnetic Particle Detection Techniques // Sensors (Switzerland). 2017. V. 17. № 10. 2300.
  4. Alcantara D., Lopez S., García-Martin M.L., Pozo D. Iron Oxide Nanoparticles as Magnetic Relaxation Switching (MRSw) Sensors: Current Applications in Nanomedicine // Nanomed.: Nanotechnol., Biol., and Med. 2016. V. 12. № 5. P. 1253–1262.
  5. Zhang Y., Yang H., Zhou Z., Huang K., Yang S., Han G. Recent Advances on Magnetic Relaxation Switching Assay-Based Nanosensors // Bioconjugate Chem. 2017. V. 28. № 4. P. 869–879.
  6. Schrittwieser S., Pelaz B., Parak W.J., Lentijo-Mozo S., Soulantica K., Dieckhoff J., Ludwig F., Guenther A., Tschöpe A., Schotter J. Homogeneous Biosensing Based on Magnetic Particle Labels // Sensors (Switzerland). 2016. V. 16. № 6. P. 828.
  7. Mikhalev K.N., Germov A.Yu., Uimin M.A., Yermakov A.E., Konev A.S., Novikov S.I., Gaviko V.S., Ponosov Yu. S. Magnetic State and Phase Composition of Carbon-Encapsulated Co@C Nanoparticles According to 59Co, 13C NMR Data and Raman Spectroscopy // Materials Res. Express. 2018. V. 5. № 5. 055033.
  8. Grass R.N., Athanassiou E.K., Stark W.J. Covalently Functionalized Cobalt Nanoparticles as a Platform for Magnetic Separations in Organic Synthesis // Angew. Chem. — Intern. Ed. 2007. V. 46. P. 4909–4912.
  9. Raev M.B., Khramtsov P.V., Bochkova M.S. Investigation into Size Distribution of Carbon Nanoparticles Covalently Functionalized with Proteins // Nanotechnol. in Russia. 2015. V. 10. № 1/2. P. 140–148.
  10. Low S.C., Shaimi R., Thandaithabany Y., Lim J.K., Ahmad A.L., Ismail A. Electrophoretic Interactions between Nitrocellulose Membranes and Proteins: Biointerface Analysis and Protein Adhesion Properties // Colloids and Surfaces B: Biointerfaces. 2013. V. 110. P. 248–253.
  11. Hoffman W.L., Jump A.A., Kelly P.J., Ruggles A.O. Binding of Antibodies and Other Proteins to Nitrocellulose in Acidic, Basic, and Chaotropic Buffers // Anal. Biochem. 1991. V. 198. № 1. P. 112–118.
  12. Mujawar L., Van Amerongen A., Norde W. Influence of Pluronic F127 on the Distribution and Functionality of Inkjet-Printed Biomolecules in Porous Nitrocellulose Substrates // Talanta. 2015. V. 131. P. 541–547.
  13. Van Lieshout R.M.L., Van Domburg T., Saalmink M., Verbeek R., Wimberger-Friedl R., Van Dieijen-Visser M.P., Punyadeera C. Three-dimensional Flow-through Protein Platform // Anal. Chem. 2009. V. 81. № 13. P. 5165–5171.
  14. Qiu S., Song C., Zhao S., Li J., Zeng H., Wu S., Guo H., Li H., Liu C., Liu Q. A New Spot Quality Control for Protein Macroarray Based on Immunological Detection // Talanta. 2015. V. 138. P. 176–182.
  15. Saha D., Acharya D., Dhar T.K. Method for Homogeneous Spotting of Antibodies on Membranes: Application to the Sensitive Detection of Ochratoxin A // Anal. and Bioanal. Chem. 2006. V. 385. № 5. P. 847–854

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies