A comparative analysis of the interaction regimes of two drops and their large population in an aerosol cloud

Cover Page

Cite item

Full Text

Abstract

A comparative analysis of experimental results obtained by different researchers using two different experimental approaches is presented: phenomenological (registration of conditions, characteristics and modes of interaction between a drop of a shell and a target drop) and statistical (analysis of collisions of tens and even hundreds of drops of liquids as part of an aerosol). The ranges of Weber criterion values (the basic parameter used for analyzing the effects of collisions of droplets in a gaseous medium) are established, corresponding to bounce, coalescence, reflexive and stretching separation, disruption, according to the results of all considered experimental research. The bounce of droplets upon collision can be observed under the conditions We = 0.35–0.5; the probability of droplet coalescence is maximum in the range We = 1–7.5; it is possible to reliably predict spreading at We = 15–50; splitting of droplets most often occurs at values We > 50. The probability of occurrence of other scenarios in the selected We ranges is not zero. The conclusion about the need to combine experimental techniques to obtain the most reliable data and their further use in the development of prognostic models is formulated.

About the authors

O. V. Vysokomornaya

National Research Tomsk Polytechnic University

Author for correspondence.
Email: vysokomornaja@tpu.ru
Russian Federation, 30, Lenin Avenue,Tomsk, 634034

A. K. Rebrov

Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences

Email: vysokomornaja@tpu.ru

Academician of the RAS

Russian Federation, 1, Academic Lavrentiev Avenue, Novosibirsk, 630090

P. A. Strizhak

National Research Tomsk Polytechnic University

Email: pavelspa@tpu.ru
Russian Federation, 30, Lenin Avenue,Tomsk, 634034

N. E. Shlegel

National Research Tomsk Polytechnic University

Email: pavelspa@tpu.ru
Russian Federation, 30, Lenin Avenue,Tomsk, 634034

References

  1. Paruchuri S., Brenner М. Р. // Phys. Rev. Lett. 2007. V. 98. Article ID134502.
  2. Eggers J., Villermaux E. // Rept. Prog. Phys. 2008. V. 71. ID036601.
  3. Sprittles J. E., Shikhmurzaev Y. D. // Phys. Ffluids. 2012. V. 24. 122105.
  4. Varaksin A. Y. // High Temp. 2013. V. 51. P. 377-407.
  5. Sazhin S.S. // Fuel. 2017. V. 196. P. 69-101.
  6. Кузнецов Г. В., Волков Р. С., Стрижак П. А. // Письма в ЖТФ. 2015. Т. 41. № 17. С. 53-60.
  7. Антонов Д. В., Волков Р. С., Кузнецов Г. В., Стрижак П. А. // ИФЖ. 2016. Т. 89. № 1. С. 94-103.
  8. Архипов В. А., Ратанов Г. С., Трофимов В. Ф. // ПМТФ. 1978. № 2. С. 73-77.
  9. Архипов В. А., Васенин И. М., Трофимов В. Ф. // ПМТФ. 1983. № 3. С. 95-98.
  10. Пажи Д. Г., Галусто В. С. Основы техники распы- ливания жидкостей. М.: Химия, 1984.
  11. Orme M. // Prog. Energy Comb. Sci. 1997. V. 23. № 1. P. 65-79.
  12. Pawar S.K., Henrikson F., Finotello G., Padding J.T., Deen N.G., Jongsma A., Innings F., Kuipers J.A.M.H. // Powd. Tech. 2016. V. 300. P. 157-163

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies