Controlling morphology of polymer photoactive layer in photovoltaic elements: mesoscopic simulation

Cover Page

Cite item

Full Text

Abstract

A concept of fabrication of well-organized conductive pathways in CP/NP blends in photovoltaic devices. It is assumed that to succeed in this task, one can use the property of AB diblock copolymers that, depending on the chemical structure of A and B blocks and the ratio between their lengths, these copolymers undergo microphase separation in bulk to form thermodynamically stable domains of cubic symmetry with 3D periodicity. Using a mesoscale simulation technique, we demonstrated that the morphology of the photoactive layer of photovoltaic devices can be controlled by selecting the surface NP modifier (responsible for the compatibility of NPs with the polymeric matrix), the chemical structure of the blocks of a conjugated copolymer, and their length.

About the authors

P. V. Komarov

Institute of Organoelement Compounds of the Russian Academy of Sciences; Tver State University

Author for correspondence.
Email: pv_komarov@mail.ru
Russian Federation, 28, Vavilova street, Moscow, 119991; 33, Zheliabova street, Tver, 170100

P. O. Baburkin

Tver State University

Email: pv_komarov@mail.ru
Russian Federation, 33, Zheliabova street, Tver, 170100

V. A. Ivanov

Lomonosov Moscow State University

Email: pv_komarov@mail.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991

Show-An Chen

National Tsing Hua University

Email: pv_komarov@mail.ru
Taiwan, Province of China, Hsinchu

A. R. Khokhlov

Institute of Organoelement Compounds of the Russian Academy of Sciences; Lomonosov Moscow State University

Email: pv_komarov@mail.ru

Academician of the RAS

Russian Federation, 28, Vavilova street, Moscow, 119991; 1, Leninskie gory, Moscow, 119991

References

  1. Lu L., Zheng T., Wu Q., Schneider A. M., Zhao D., YU L. // Chem. Rev. 2015. V. 115. № 23. P. 1266612731.
  2. Tvrdy K., Frantsuzov P. A., Kamat P. V. // Proc. Natl. Acad. Sci. USA. 2011. V. 108. № 1. P. 29-34.
  3. Ren S., Chang L.-Y., Lim S.-K., Zhao J., Smith M., Zhao N., Bulovi V., Bawendi M., Gradecak S. // Nano Lett. 2011. V. 11. № 11. P. 3998-4002.
  4. Lee С. W., Chou C. H., Huang J. H., Hsu C. S., Nguyen T. P. // Mater. Sci. Eng. B. 2008. V. 147. № 2/3. P. 307-311.
  5. Saunders B. R. // J. Colloid and Interface Sci. 2012. V. 369. P. 1-15.
  6. Matsen M. W., Griffiths G. H., Wickham R. A., Vas- siliev O. N. // J. Chem. Phys. 2006. V. 124. № 2. P. 024904-9.
  7. Groot R. D., Warren P. B. // J. Chem. Phys. 1997. V. 107. № 11. P. 4423-4435.
  8. Komarov P. V., Veselov I. N., Khalatur P. G. // Chem. Phys. Lett. 2014. V. 605/606. P. 22-27.
  9. Markina A. A., Ivanov V. A., Komarov P. V., Khokhlov A. R., Tung S.-H. // J. Phys. Chem. B. 2017. V. 121. № 33. P. 7878-7888.
  10. Giansante C., Carbone L., Giannini C., Altamura D., Ameer Z., Maruccio G., Loiudice A., Belviso M. R., Coz- zoli P. D., Rizzo A., Gigli G. // J. Phys. Chem. C. 2013. V. 117. № 25. P. 13305-13317.
  11. Hildebrand J. J.H., Scott R. L. The Solubility of NonElectrolytes. N.Y.: Reinhold, 1949.
  12. Greaney M. J., Brutchey R. L. // Materials Today. 2015. V. 18. № 1. P. 31-38.
  13. Askadskii A. A. Computational Materials Science of Polymers. Cambridge: Cambridge Intern. Sci. Publ., 2001.
  14. Sadovnichy V., Tikhonravov A., Voevodin V., Opanas- enko V. In: Contemporary High Performance Computing: From Petascale toward Exascale. L.: Chapman & Hall/CRC, 2013. P. 283-307

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies