The least distance between extremums and minimal period of solutions to autonomous vector differential equations

Cover Page

Cite item

Full Text

Abstract

Solutions x(t) of the Lipschitz equation x = f(x) with an arbitrary vector norm are considered. It is proved that the sharp lower bound for the distances between successive extremums of xk(t) equals π/L where L is the Lipschitz constant. For non-constant periodic solutions, the lower bound for the periods is 2π/L. These estimates are achieved for norms that are invariant with respect to permutation of the indices.

About the authors

A. A. Zevin

ITST NAS of Ukraine

Author for correspondence.
Email: alexandr.zevin@gmail.com
Ukraine, Dnieper

References

  1. Yorke J. // Proc. Amer. Math. Soc. 1969. V. 22. P. 509– 512.
  2. Mawhin J, Walter W. // JMAA. 1994. V. 186. P. 778798.
  3. Busenberg S., Fisher D., Martelli M. // Amer. Math. Monthly. 1989. V. 96. P. 5-17.
  4. Busenberg S., Fisher D., Martelli M. // Proc. Amer. Math. Soc. 1986. V. 86. P. 376-378.
  5. Зевин А. А. // ДАН. 2012. T. 444. № 6. C. 602-604.
  6. Zevin A. A. // arXiv.14124539 [math.DS]. 2014.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences