Natural dicarbonyls inhibit peroxidase activity of peroxiredoxins

Cover Page

Cite item

Full Text

Abstract

It has been established that the activity of recombinant human peroxiredoxins (Prx1, Prx2, Prx4 and Prx6) inhibits by natural dicarbonyls formed during free radical peroxidation of unsaturated lipids (malonic dialdehyde) and oxidative transformations of glucose (glyoxal, methylglyoxal). The possible role of peroxiredoxins activity decreasing under oxidative and carbonyl stress is discussed as an important factor that includes molecular mechanisms of vascular wall damage in atherosclerosis and diabetes mellitus.

About the authors

V. Z. Lankin

Federal State Budget Organization National Medical Research Center of Cardiology, Ministry of Healthcare Russian Federation

Author for correspondence.
Email: lankin941@mail.ru
Russian Federation, Moscow

M. G. Sharapov

Institute of Cell Biophysics of the Russian Academy Sciences

Email: lankin941@mail.ru
Russian Federation, Pushchino

R. G. Goncharov

Institute of Cell Biophysics of the Russian Academy Sciences

Email: lankin941@mail.ru
Russian Federation, Pushchino

A. K. Tikhaze

Federal State Budget Organization National Medical Research Center of Cardiology, Ministry of Healthcare Russian Federation

Email: lankin941@mail.ru
Russian Federation, Moscow

V. I. Novoselov

Institute of Cell Biophysics of the Russian Academy Sciences

Email: lankin941@mail.ru
Russian Federation, Pushchino

References

  1. Seo M. S., Kang S. W., Kim K., et al. // J. Biol. Chem. 2000. V. 275. № 27. P. 20 346-20 354.
  2. Hofmann B., Hecht H. H., Flohe L. // Peroxiredoxins. 2002. Biol. Chem. V. 383. № 3/4. P. 347-364.
  3. Manevich Y., Shuvaeva T., Dodia C., et al. // Arch. Biochem. Biophys. 2009. V. 485. P. 139-149.
  4. Kinnula V. L., Lehtonen S., Kaarteenaho-Wiik R., et al. // Thorax. 2002. V. 57. № 2. P. 157-164.
  5. Шарапов М.Г., Гончаров Р.Г., Гордеева А.Е. и др. // ДАН. 2016. Т. 471. № 2. С. 241-244.
  6. Lankin V., Konovalova G., Tikhaze A., et al. // Mol. Cell. Biochem. 2014. V. 395. № 1/2. P. 241-252.
  7. Chapple S.J., Cheng X., Mann G.E. // Redox Biol. 2013. V. 1. № 5. P. 319-31.
  8. Ланкин В.З., Шумаев К.Б., Тихазе А.К., Курганов Б.И. // ДАН. 2017. Т. 475. № 6. С. 706-709.
  9. Sharapov M. G., Penkov N. V., Gudkov S. V., at al. // Biophysics. 2018. V. 63. № 2. P. 17-24.
  10. Kang S. W., Baines I. C., Rhee S.G. // J. Biol. Chem. 1998. V. 273. P. 6303-6311.
  11. WoodZ.A., Schroder E., Robin Harris J., Poole L. B. // Trends Biochem. Sci. 2003. V. 28. № 1. P. 32-40.
  12. Nelson K.J., Perkins A., Van Swearingen A.E.D., et al. // Antioxid. Redox Signal. 2018. V. 28. № 7. P. 521-536.
  13. Lo T. W.C., Westwood M. E., McLellan A.C., et al. // J. Biol. Chem. 1994. V. 269. P. 32 299-32 305.
  14. Zeng J., Davies M. J. // Chem. Res. Toxicol. 2006. V. 19. № 12. P. 1668-1676.
  15. Okado-Matsumoto A., Matsumoto A., Fujii J., Tanigu- chi N. // J. Biochem. 2000. V. 127. № 3. P. 493-501.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies