Relationship of lightning flashes frequency with statistical characteristics of convective activity in the atmopshere

Cover Page

Cite item

Full Text

Abstract

A modification of the commonly used Price-Rind scheme for lightning flashes frequency (LFF), which can be used for calculations with large spatial and time steps, is developed. With such steps, the exponent in the relationship of LFF on convective cloud heights appears to be smaller by a factor of two over land and by one fourth over ocean in comparison to that in the original Price-Rind scheme. The modified version is implemented into the IAP RAS climate model (CM). The results of the lightning flash frequency simulations with the modified scheme agree better with the satellite data than those with the original one. In the IAP RAS CM, global warming (cooling) leads to LFF increase (decrease) in all seasons. The sensitivity of lightning flashes frequency to the surface air temperature change at the global level is estimated equal to 10%/K.

About the authors

A. V. Eliseev

Lomonosov Moscow State University; Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences; Kazan Federal University

Author for correspondence.
Email: eliseev@ifaran.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991; 3, Pizevsky, Moscow, 119017; 18, Kremliovskaya street, Kazan, 420008

A. N. Ploskov

Lomonosov Moscow State University

Email: eliseev@ifaran.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991

А. V. Chernokulsky

Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences

Email: eliseev@ifaran.ru
Russian Federation, 3, Pizevsky, Moscow, 119017

I. I. Mokhov

Lomonosov Moscow State University; Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: eliseev@ifaran.ru

Academician of the RAS

Russian Federation, 1, Leninskie gory, Moscow, 119991; 3, Pizevsky, Moscow, 119017; 9, Institutskij, Dolgoprudny, Moscow region, 141701

References

  1. Rakov V. A., Uman M. A. Lightning: Physics and Effects. Cambridge: Cambridge Univ. Press, 2003. 687 p.
  2. Price C., Rind D. // J. Geophys. Res.: Atmospheres. 1992. V. 97. № D9. P. 9919-9933.
  3. Mareev E. A., Volodin E. M. // Geophys. Res. Lett. 2014. V. 41. № 24. P. 9009-9016.
  4. Кгаизе A., FosterS, WilkenskjeldS, et al. // J. Geophys. Res.: Biogeosciences. 2014. V. 119. № 3. Р. 312-322.
  5. Clark S.К., Ward D.S., Mahowald N.M. // Geophys. Res. Lett. 2017. V. 44. № 6. P. 2893-2901.
  6. Claussen M., Mysak L.A., WeaverA.J., etal. // Clim. Dyn. 2002. V. 18. № 7. P. 579-586.
  7. мохов и. и., Елисеев А. В. // ДАН. 2012. Т. 443. № 6. C. 732-736.
  8. мазин и. П., Хргиан А. Х. Облака и облачная атмосфера. Л.: Гидрометиздат, 1989. 647 c.
  9. Брылев Г. Б., Гашина C. Б., низдойминога Г. Л. Радиолокационные характеристики облаков и осадков. Л.: Гидрометеоиздат, 1986. 234 с.
  10. Eliseev A. V., Coumou D., Chernokulsky A. V., et al. // Geosci. Model Develop. 2013. V. 6. № 5. P. 1745-1765.
  11. мохов и. и. Диагностика структуры климатической системы. СПб.: Гидрометоиздат, 1993. 271 с.
  12. Cecil D. J., Buechler D. E., Blakeslee R. J. // Atmos. Res. 2014. V. 135/136. P. 404-414.
  13. Sun B., Groisman P.Ya., Mokhov I. I. // J. Clim. 2001. V. 14. № 8. Р. 1864-1880.
  14. Мохов И. И., Акперов М. А. // Изв. РАН. Физика атмосферы и океана. 2006. Т. 42. № 4. С. 467–475.
  15. Norris J. R. // J. Geophys. Res.: Atmospheres. 2005. V.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies