Synthesis and gas transport parameters of membranes modified by star­shaped nanocrystalline palladium

Cover Page

Cite item

Full Text

Abstract

Methods have been developed to modify the surface of Pd-23%Ag alloy films in order to increase the rate of hydrogen transfer with appearance of palladium coatings of the “nanostar” and “nanopore” types. The gas transport parameters of the membranes which surface is activated using the developed methods were investigated. The modification of surface of Pd-Ag films synthesized by star-like palladium nanocrystallites allows achieving a hydrogen flux density of up to 0.75 mmol / (s × m2) - that is 1.7 times more than in case of modification modified by “nanopore” type coating of sufficiently thin palladium membranes (< 10 µm) under low temperature (<100 °C) and pressure (<0.6 MPa).

About the authors

I. S. Petriev

Kuban State University; Federal Research Center The Southern Scientific Centre of the Russian Academy of Sciences

Author for correspondence.
Email: petriev_iliya@mail.ru
Russian Federation, 149, Stavropolskaya street, Krasnodar, 350040; 41, Chekhova street, Rostov-on-Don, 344006

S. N. Bolotin

Federal Research Center The Southern Scientific Centre of the Russian Academy of Sciences

Email: petriev_iliya@mail.ru
Russian Federation, 41, Chekhova street, Rostov-on-Don, 344006

V. Yu. Frolov

Kuban State University; Federal Research Center The Southern Scientific Centre of the Russian Academy of Sciences

Email: petriev_iliya@mail.ru
Russian Federation, 149, Stavropolskaya street, Krasnodar, 350040; 41, Chekhova street, Rostov-on-Don, 344006

M. G. Baryshev

Kuban State University; Federal Research Center The Southern Scientific Centre of the Russian Academy of Sciences

Email: petriev_iliya@mail.ru
Russian Federation, 149, Stavropolskaya street, Krasnodar, 350040; 41, Chekhova street, Rostov-on-Don, 344006

References

  1. Dittmeyer R., Hollein V., Daub K. // J. Mol. Catal. A: Chem. 2001. V. 173. P. 135.
  2. Petriev I.S., Bolotin S.N., Frolov V.Y., et al. // Bull. Acad. Sci. 2016. V. 80. № 6. P. 624-626.
  3. Didenko L.P., Babak V.N., Sementsova L.A., et al. // Petroleum Chem. 2017. V. 57. № 11. P. 935-946.
  4. Фромм Е., Гебхардт Е. Газы и углерод в металлах. М.: Металлургия, 1980. 712 с.
  5. Petriev I.S., Frolov V.Y., Bolotin S.N., et al. // Rus. Phys. J. 2015. V. 58. № 8. P. 1044-1048.
  6. Джимал С.С., Басов А.А., Волченко Н.Н. и др. // ДАН. 2017. Т. 476. № 5. С. 584-587.
  7. Lytkina A.A., Orekhova N.V., Ermilova M.M., et al. // Petroleum Chem. 2017. V. 57. № 13. P. 1219-1227.
  8. Lytkina A.A., Orekhova N.V., Ermilova M.M., et al. / Int. J. Hydrogen Energy. 2017. V. 43. № 1. P. 198-207.
  9. Kharisov B.I., Kharissova O.V., Ortiz­Méndez U. Handbook of less - common nanostructures Boca Raton (FL): Taylor & Francis Group, 2012. 828 p.
  10. Barbosa S., Agrawal A., Rodriguez­Lorenzo L., et al. // Langmuir. 2010. V. 26. № 18. P. 14 943-14 950.
  11. Kumar P.S., Pastoriza­Santos I., Rodriguez­Gonzalez B., et al. // Nanotechnology. 2008. V. 19. № 1. P. 015606/1-015606/6.
  12. Wu H.­L., Chen C.­H., Huang M.H., et al. // Chemistry of Materials. 2009. V. 21. № 1. P. 110-114.
  13. Petriev I.S., Bolotin S.N., Frolov V.Y., et al. // Bull. Rus. Acad. Sci. 2018. V. 82. № 7. P. 807-810.
  14. Petriev I.S., Frolov V.Y., Bolotin S.N., et al. // Rus. Phys. J. 2018. V. 60. № 9. P. 1611-1617.
  15. Qin Yu­Ling, Zhang Xin­Bo, Wang Jun, et al. // J. Materials Chemistry. 2012. V. 22. P. 14 861-14 863.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies