Carbon nanotubes in arrays: competition of van der Waals and elastic forces

Cover Page

Cite item

Full Text

Abstract

The van der Waals interaction between carbon nanotubes leads to forming the agglomerates. If the nanotubes are the same diameters and legths they are associated into regular structure like a crystal. However, the van der Waals forces also result to some deformation of the nanotubes. This work presents the analysis of the influence of the nanotubes’ diameters and the symmetry of their arrangement on the nanotube deformation and intertube distances.

About the authors

V. V. Smirnov

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: vvs@polymer.chph.ras.ru
Russian Federation, 4, Kosygin street, Moscow, 119991

L. I. Manevitch

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: lmanev@chph.ras.ru
Russian Federation, 4, Kosygin street, Moscow, 119991

References

  1. Thess A., Lee R., Nikolaev P., Dai H., Petit P., Robert J., Xu C., Lee Y.H., Kim S.G., Rinzler A.G., Colbert D.T., Scuseria G.E., Tomanek D., Fischer J.E., Smalley R.E. Crystalline Ropes of Metallic Carbon Nanotubes // Sci. 1996. V. 273. № 5274. P. 483-487.
  2. Schlittler R.R., Seo J.W., Gimzewski1 J. K., Durkan C., Saifullah M. S. M., Welland M. E. Single Crystals of Single-Walled Carbon Nanotubes Formed by Self-Assembly // Science. 2001. V. 292. № 5519. P. 1136-1139.
  3. Tang J., Qin L.-C., Sasaki T., Yudasaka M., Matsushita A., Iijima S. Compressibility and Polygonization of Single-Walled Carbon Nanotubes Under Hydrostatic Pressure // Phys. Rev. Lett. 2000. V. 85. № 9. P. 1887-1889.
  4. Sharma, S.M., Karmakar S., Sikka S.K, Teredesai P.V., Sood A.K., Govindaraj A., Rao C.N.R. Pressure-Induced Phase Transformation and Structural Resilience of Single-Wall Carbon Nanotube Bundles// Phys. Rev. B. 2001. V. 63. № 20. P. 205417 (1-5).
  5. Tang T., Jagota A., Hui C.-Y., Glassmaker N.J. Collapse of Single-Walled Carbon Nanotubes // J. Appl. Phys. 2005. V. 97. № 7. P. 074310 (1-6).
  6. Girifalco L. A., Hodak M., Lee R. Carbon Nanotubes, Buckyballs, Ropes, and a Universal Graphitic Potential // Phys. Rev. B. 2000. V. 62. № 19. P. 13 104-13 110.
  7. Volkov A.N., Zhigilei L.V. Mesoscopic Interaction Potential for Carbon Nanotubes of Arbitrary Length and Orientation // J. Phys. Chem. C. 2010. V. 114. № 12. P. 5513-5531.
  8. Sun C.H., Yin L.C., Li F., Lu G.-Q., Cheng H.-M. Van der Waals interactions Between Two Parallel Infinitely Long Single-Walled Nanotubes // Chem. Phys. Lett. 2005. V. 403. № 35. P. 343-346.
  9. Sun C.-H., Lu G.-Q., Cheng H.-M. Simple Approach to Estimating the van der Waals Interaction between Carbon Nanotubes // Phys. Rev. B. 2006. V. 73. № 19. P. 195414 (1-5).
  10. Zhao J., Jiang J.-W., Jia Y., Guo W., Rabczuk T. A Theoretical Analysis of Cohesive Energy between Carbon Nanotubes, Graphene and Substrates// Carbon. 2013. V. 57. P. 108-119.
  11. Tang T., Jagota A., Hui C.-Y. Adhesion between Single-Walled Carbon Nanotubes// J.Appl. Phys. 2005. V. 97. № 7. P. 074304 (1-6).
  12. Tersoff J., Ruoff R.S. Structural Properties of a Carbon-Nanotube Crystal// Phys. Rev. Lett. 1994. V. 73. № 5. P. 676-679.
  13. Silvestre N., Wang C.M., Zhang Y.Y., Xiang Y. Sanders Shell Model for Buckling of Single-Walled Carbon Nanotubes with Small Aspect Ratio// Composite Structures. 2011. V. 93. № 7. P. 1683-1691.
  14. Rafiee R., Moghadam R.M. On the modeling of carbon nanotubes: A critical review//Composites: Part B. 2014. V. 56. P. 435-449.
  15. Smirnov V.V., Manevitch L.I., Strozzi M., Pellicano F. Nonlinear Optical Vibrations of Single-Walled Carbon Nanotubes. 1. Energy exchange and localization of low-frequency oscillations// Physica D: Nonlinear Phenomena. 2016. V. 325. P. 113-125.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies