Bernoulli-Euler beam under action of a moving thermal source: characteristics of the dynamic behavior

Cover Page

Abstract


The problem of a heating source acting on a certain part of a beam surface and moving along it with given speed is solved. It is shown that the most significant role in formation of the beam deflection under loading by a compression force is played by concentrated moments occurring at the moving boundary of the heating source. It is noted that for a source speed less than some critical value, the beam deflection is essentially nonmonotonic. In this case, the largest beam bending deflection occurs when the source speed reaches a value corresponding to the Euler critical force.


About the authors

N. F. Morozov

Institute of Problems in Mechanical Engineering of Russian Academy of Siences; Saint-Petersburg State University

Author for correspondence.
Email: o.privalova@mail.ru

Russian Federation, V.O., Bol'shoy prospect, 61, St. Petersburg, 199178; 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

Academician of the Russian Academy of Sciences

D. A. Indeitsev

Institute of Problems in Mechanical Engineering of Russian Academy of Siences; Peter the Great St.Petersburg Polytechnic University; Saint-Petersburg State University

Email: o.privalova@mail.ru

Russian Federation, V.O., Bol'shoy prospect, 61, St. Petersburg, 199178; 29, Polytechnitcheskaya street, St.-Petersburg, 195251; 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

Corresponding Member of the Russian Academy of Sciences

A. V. Lukin

Peter the Great St.Petersburg Polytechnic University

Email: o.privalova@mail.ru

Russian Federation, 29, Polytechnitcheskaya street, St.-Petersburg, 195251

I. A. Popov

Peter the Great St.Petersburg Polytechnic University

Email: o.privalova@mail.ru

Russian Federation, 29, Polytechnitcheskaya street, St.-Petersburg, 195251

O. V. Privalova

Peter the Great St.Petersburg Polytechnic University

Email: o.privalova@mail.ru

Russian Federation, 29, Polytechnitcheskaya street, St.-Petersburg, 195251

B. N. Semenov

Institute of Problems in Mechanical Engineering of Russian Academy of Siences; Saint-Petersburg State University

Email: semenov@bs1892.spb.edu

Russian Federation, V.O., Bol'shoy prospect, 61, St. Petersburg, 199178; 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

L. V. Shtukin

Institute of Problems in Mechanical Engineering of Russian Academy of Siences; Peter the Great St.Petersburg Polytechnic University

Email: o.privalova@mail.ru

Russian Federation, V.O., Bol'shoy prospect, 61, St. Petersburg, 199178; 29, Polytechnitcheskaya street, St.-Petersburg, 195251

References

  1. Sun Y., Liu S., Rao Z., Li Y., Yang Y. // Symmetry. 2018. V. 10. № 8. P. 328-341.
  2. Fang D., Soh A. K. // Int. J. Solids and Struct. 2008. V. 45. P. 1993-2013.
  3. Sun Y., Ma J., Yang X., Liu S., Yang J. // Canad. J. Phys. 2017. V. 95. № 10. P. 1012-1022.
  4. Морозов Н. Ф., Индейцев Д. А., Лукин А. В., Попов И. А., Привалова О. В., Штукин Л. В. // Изв. вузов. Северо-Кавказский регион. Сер. Техн. науки. 2018. № 2 (198). С. 35-44.
  5. Морозов Н.Ф., Индейцев Д.А., Лукин А.В., Попов И.А., Привалова О.В., Штукин Л.В. // ДАН. 2018. Т. 481. № 6. С. 619-624.
  6. Морозов Н. Ф., Товстик П. Е. // ДАН. 2013. Т. 453. № 3. С. 282-285
  7. Слепян Л. И. Нестационарные упругие волны. Л.: Судостроение, 1972. 376 с.
  8. Нелинейные волны / Под ред. С. Лейбовица, А. Сибаса. М.: Мир, 1977. 319 с.

Statistics

Views

Abstract - 149

PDF (Russian) - 106

PlumX


Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies