Dynamics of the structural transformation of crystalline hydrogen upon the transition into the conductive state under compression

Cover Page

Cite item

Full Text

Abstract

The structural transformation of solid hydrogen under compression along the isotherm of 100 K in the region of transition into the conductive state was studied within the density functional theory. The pressure, the pair correlation function of protons, the density of electron states, and the electrical conductivity were calculated within a range of hydrogen densities from 1,14 to 2,11 g/cm3. The transition of the monoclinic structure of molecular solid hydrogen into the orthorhombic Cmca structure with 12 hydrogen atoms in a unit cell was revealed. In this case, the electrical conductivity was observed to grow, though hydrogen remained molecular. Hydrogen molecules decomposed under compression to the density of 1,563 g/cm3. A unit cell, the thus-formed quasi-tetrahedron, was built of five protons with a distance of 0,92 Å from the central proton to the four others.

About the authors

G. E. Norman

Higher School of Economics; Joint Institute for High Temperatures of the Russian Academy of Sciences; Moscow Institute of Physics and Technology

Author for correspondence.
Email: genri.norman@gmail.com
Russian Federation, 20, Myasnitskaya str., Moscow, 101000; 13/19, Izhorskaya str., Moscow,125412; 9, Institutskij, Dolgoprudny, Moscow region, 141701

I. M. Saitov

Higher School of Economics; Joint Institute for High Temperatures of the Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: genri.norman@gmail.com
Russian Federation, 20, Myasnitskaya str., Moscow, 101000; 13/19, Izhorskaya str., Moscow,125412; 9, Institutskij, Dolgoprudny, Moscow region, 141701

References

  1. Ashcroft N. W. // Phys. Rev. Lett. 1968. V. 21. P. 1748-1749.
  2. Бровман Е. Г., Каган Ю., Холас А. // ЖЭТФ. 1972. Т. 62. С. 1492-1501.
  3. Dias R., Silvera I. F. // Science. 2017. V. 355. P. 715-718.
  4. Eremets M. I., Troyan I. A. // Nature Materials. 2011. № 10. P. 927-931.
  5. McMahon J.M., Ceperley D. M. // Phys. Rev. Lett. 2011. V. 106. 165302.
  6. Azadi S., Monserrat B., Foulkes W. M.C., Needs R. J. // Phys. Rev. Lett. 2014. V. 112. 165501.
  7. Дегтяренко Н. Н., Мазур Е. А. // Письма в ЖЭТФ. 2016. Т. 104. № 5. С. 329-333.
  8. Кудряшов Н. А., Кутуков А. A., Мазур Е. А. // Письма в ЖЭТФ. 2016. Т. 104. № 7. С. 488-493.
  9. Дегтяренко Н. Н., Мазур Е. А., Гришаков К. С. // Письма в ЖЭТФ. 2017. Т. 105. № 10. С. 624-630.
  10. Rillo G., Morales M. A., Ceperley D. M., Pierleoni C. // J. Chem. Phys. 2018. V. 148. 102314. 13 p.
  11. Pickard C. J., Needs R. J. // Nature Phys. 2007. V. 3. P. 473-476.
  12. Норман Г. Э., Саитов И. М. // ДАН. 2018. Т. 481. № 3. С. 250-253.
  13. Kresse G., Furthmüller J. // Phys. Rev. B. 1996. V. 54. № 16. P. 11 169-11 186.
  14. Perdew J. P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865-3868.
  15. Heyd J., Scuseria G. E., Ernzerhof M. // J. Chem. Phys. 2003. V. 118. P. 8207-8215.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies