The orientation of the layered aluminosilicates particles with a high aspect ratio in paraffin under electric field

Cover Page

Cite item

Full Text

Abstract

The electrorheological behavior is significantly affected by the strength of the structure formed in the electric field, due to the filler particles orientation. The structural organization of the filler in electric field was studied by X-ray scattering on paraffin films. Particles of layered aluminosilicates with a high aspect ratio and various morphology such as montmorillonite and halloysite were used as fillers. The differences in the structure formation by fillers of plate and tubular shape were shown.

About the authors

N. M. Kuznetsov

National Research Centre "Kurchatov Institute"

Author for correspondence.
Email: kyz993@yandex.ru
Russian Federation, 1, Kurchatov square, Moskow, 123182

A. V. Bakirov

National Research Centre "Kurchatov Institute"; Institute of synthetic polymeric materials of the Russian Academy of Sciences

Email: kyz993@yandex.ru
Russian Federation, 1, Kurchatov square, Moskow, 123182; 70, Profsoyuznaya street, Moscow, 117393

S. I. Belousov

National Research Centre "Kurchatov Institute"

Email: kyz993@yandex.ru
Russian Federation, 1, Kurchatov square, Moskow, 123182

S. N. Chvalun

National Research Centre "Kurchatov Institute"; Institute of synthetic polymeric materials of the Russian Academy of Sciences

Email: kyz993@yandex.ru
1, Kurchatov square, Moskow, 123182; 70, Profsoyuznaya street, Moscow, 117393

References

  1. Hao T. // Adv. Mater. 2001. V. 13. № 24. P. 1847. doi: 10.1002/1521-4095(200112)13:24<1847::AID- ADMA1847>3.0.CO;2-A
  2. Parmar K.P.S., Méheust Y., Schjelderupsen B., Fos- sum J.O. // Langmuir. 2008. V. 24. № 5. P. 1814 doi: 10.1021/la702989u
  3. Ivanov K.V., Ivanova O.S., Agafonov A.V., Kozyukhin S.A. // Colloid J. 2017. V. 79 № 2. P. 204. DOI: 10.1134/ S1061933X17020041
  4. Agafonov A.V., Davydova O.I., Krayev A.S. et al. // J. Phys. Chem. B. 2017. V. 121. № 27. P. 6732. doi: 10.1021/acs.jpcb.7b04131
  5. Yoon C.-M., Jang Y., Noh J. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 41. P. 36358. DOI: 10.1021/ acsami.7b08298
  6. Agafonov A.V., Kraev A.S., Ivanova O.S., et al. // Rheol. Acta. 2018. V. 57. P. 307. doi: 10.1007/s00397-018- 1076-x
  7. Ramos-Tejada M.M., Rodriguez J.M., Delgado A.V. // Rheol. Acta. 2018. V. 57. P. 405. doi: 10.1007/s00397- 018-1086-8
  8. Joussein E., Petit S., Churchman J. et al. // Clay Miner. 2005. V. 40. № 4. P. 383. DOI: 10.1180/ 0009855054040180
  9. Cherdyntseva S.V., Belousov S.I., Krasheninnikov S.V. et al. // Nanotechnologies in Russia. 2013. V. 8. № 11-12. P. 765. doi: 10.1134/S1995078013060050
  10. Ploehn H.J., Liu C. // Ind. Eng. Chem. Res. 2006. V. 45. № 21. P. 7025. doi: 10.1021/ie051392r
  11. Kuznetsov N.M., Belousov S.I., Bessonova N.P., Chvalun S.N. // Izv. Vyss. Uchebnykh Zaved. Khimiya Khimicheskaya Tekhnologiya. 2018. V. 61. № 6. P. 41. doi: 10.6060/tcct.20186106.5682
  12. Kuznetsov N.M., Stolyarova D.Yu., Belousov S.I., et al. // Express Polym. Lett. 2018. V.12. № 11. P. 958. doi: 10.3144/expresspolymlett.2018.82
  13. Kuznetsov N.M., Shevchenko V.G., Stolyarova D.Yu. et al. // J. Appl. Polym. Sci. 2018. V. 135. P. 46614. doi: 10.1002/app.46614
  14. Rozynek Z., Knudsen K.D., Fossum J.O. et al. // J. Phys. Condens. Matter. 2010. V. 22. № 32. P. 324104. doi: 10.1088/0953-8984/22/32/324104
  15. Rozynek Z., Zacher T., Janek M., et al. // Appl. Clay Sci. 2013. V. 77-78, P. 1. doi: 10.1016/j.clay. 2013.03.014

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies