The formation of nanowhiskers in syntactic foam containing tungsten under nanosecond flow of relativistic electrons

Cover Page

Abstract


The results of experimental studies of the nanowhiskers formation under the influence of relativistic electron beams of nanosecond duration on syntactic foam containing tungsten are presented. We demonstrated effects which observed after a single impact of relativistic electron beams with a flux density of 230-240 J/cm2 and a total pulse duration of 150 ns. The spheres with diameter of more than 40 µm are destroyed in irradiated syntactic foam. Filamental structure is formed on the surface of such spheres. Its length is up to 10 µm and a diameter of about 100 nm. The complex kinetics substance expansion from the irradiated surface was found out. The speeds of gas-plasma formations expansion reached ~ 13 km/s. It was found that nanowhiskers are not formed near the emission “crater” from syntactic foam, where the duration of the mechanical pressure pulse is minimal and close to the duration of the relativistic electron beam impact.


About the authors

Yu. M. Milekhin

Federal Center of Dual Use Technologies Soyuz

Email: soyuz@fcdt.ru

Russian Federation, 42, Akademika Zhukova street, Dzerzhinskii, Moscow oblast, 140090

Academician of the Russian Academy of Sciences

D. N. Sadovnichii

Federal Center of Dual Use Technologies Soyuz

Author for correspondence.
Email: soyuz@fcdt.ru

Russian Federation, 42, Akademika Zhukova street, Dzerzhinskii, Moscow oblast, 140090

K. Yu. Sheremetyev

Federal Center of Dual Use Technologies Soyuz

Email: soyuz@fcdt.ru

Russian Federation, 42, Akademika Zhukova street, Dzerzhinskii, Moscow oblast, 140090

Yu. G. Kalinin

National Research Centre "Kurchatov Institute"

Email: soyuz@fcdt.ru

Russian Federation, 1, Kurchatov square, Mosсow, 123182

E. D. Kazakov

National Research Centre "Kurchatov Institute"; National Research University Moscow Power Engineering Institute

Email: soyuz@fcdt.ru

Russian Federation, 1, Kurchatov square, Mosсow, 123182; 14, Krasnokazarmennay street, Moscow,111250

M. B. Markov

Institute for Applied Mathematics of the Russian Academy of Sciences

Email: soyuz@fcdt.ru

Russian Federation, 4, Miusskaya square, Moscow, 125047

References

  1. Третьяков Ю. Д., Гудилин Е. А. // Успехи химии. 2009. Т. 78. № 9. С. 867-887.
  2. Дубровский В. Г., Цырлин Г. Э., Устинов В. М. // Физика и техника полупроводников. 2009. Т. 43. В. 12. С. 1586-1628.
  3. Сыркин В. Г. CVD метод. Химическое парофазное осаждение. М.: Наука, 2000. 496 с.
  4. Frigeri P., Seravalli L., Trevisi G., Franchi S. Comprehensive Semiconductor Science and Technology. V. 3. Materials, Preparation, and Properties. Amsterdam etc.: Elsevier, 2011. P. 480-522.
  5. Ананьев С. С., Багдасаров Г. А., Гасилов В. А. и др. // Физика плазмы. 2017. Т. 43. № 7. С. 608-615.
  6. Берлин А. А., Шутов Ф. А. Упрочненные газонаполненные пластмассы. М.: Химия, 1980. 224 с.
  7. Meng X.-F., Shen X.-Q., Liu W. // Appl. Surface Sci. 2012. V. 258. № 7. P. 2627-2631.
  8. Демидов Б. А., Ефремов В. П., Казаков Е. Д. и др. // Приборы и техника эксперимента. 2016. № 2. С. 96-99.
  9. Gupta N., Woldesenbet E. // J. Cellular Plastics. 2004. V. 40. P. 461-480.
  10. Сакович Г. В., Жарков А. С., Петров Е. А. // Рос. нанотехнологии. 2013. Т. 8. № 9/10. С. 11-20.
  11. Ремпель А. А. // Успехи химии. 2007. Т. 76. № 5. С. 474-500.
  12. Крауз В. И., Химченко Л. Н., Мялтон В. В. и др. // Физика плазмы. 2013. Т. 39. № 4. С. 326-332.
  13. Семенова А. А., Гудилин Е. А., Семенова И. А. и др. // ДАН. 2011. Т. 438. № 4. С. 490-493.
  14. Гафаров Б. Р., Ефремов В. П., Садовничий Д. Н. и др. // Хим. физика. 2001. Т. 20. № 4. С. 66-72.
  15. Будов В. В. // Пробл. прочности. 1991. № 5. С. 68-70.

Statistics

Views

Abstract - 104

PDF (Russian) - 56

PlumX


Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies