Integrated mathematical model of the Barents and White seas large marine ecosystem - a tool for assessing natural risks and efficient use of biological resources

Cover Page

Cite item

Full Text

Abstract

Integrated mathematical model of the Barents and White seas LME is proposed as a tool for assessing natural risks and rational use of biological resources. The model includes the following main blocks (modules): a) oceanographic conditions and biological productivity; b) trophodynamics and fishery management; c) environmental and biota pollution; d) socio-economic development; e) assessment of environmental risks from marine activities. Integrated model was used for assessing: the hydrological variability, long-term dynamics of ecosystem productivity and fishing load on the most important commercial species of the Barents Sea. A new zoning of the Barents Sea taking into account the geomorphological and hydrological factors was performed under the guidance of academician G.G. Matishov. Maps of the simulated gross primary production in the Barents Sea for the second half of the 20th and first decade of the 21st centuries are presented. The energy balance in the Barents Sea ecosystem at the end of the 20th and the beginning of the 21st century was calculated by trophodynamic model. It is concluded that determination of the fishing load on populations should base on using ecosystem mathematical models instead of single-species models. To estimate the fishing mortality, it is necessary to take into account not only the spatial effects associated with the characteristics of the fishes' life cycle and the distribution of fishing load, but also the influence of climatic factors and inner-ecosystem interactions. The use of modern information technologies, both in the field of primary data analysis, and in the area of their generalization to diagnose past changes, makes it possible to better understand the consequences for the Barents and White seas LME of existing natural resource use plans, taking into account the experience (sometimes negative) of past years and the expected climatic changes.

About the authors

S. V. Berdnikov

Federal Research Center, the Southern Scientific Centre of the Russian Academy of Sciences

Author for correspondence.
Email: berdnikov@ssc-ras.ru
Russian Federation, 41, Chekhova street, Rostov-on-Don, 344006

V. V. Kulygin

Federal Research Center, the Southern Scientific Centre of the Russian Academy of Sciences

Email: berdnikov@ssc-ras.ru
Russian Federation, 41, Chekhova street, Rostov-on-Don, 344006

V. V. Sorokina

Federal Research Center, the Southern Scientific Centre of the Russian Academy of Sciences

Email: berdnikov@ssc-ras.ru
Russian Federation, 41, Chekhova street, Rostov-on-Don, 344006

L. V. Dashkevich

Federal Research Center, the Southern Scientific Centre of the Russian Academy of Sciences

Email: berdnikov@ssc-ras.ru
Russian Federation, 41, Chekhova street, Rostov-on-Don, 344006

I. V. Sheverdyaev

Federal Research Center, the Southern Scientific Centre of the Russian Academy of Sciences

Email: berdnikov@ssc-ras.ru
Russian Federation, 41, Chekhova street, Rostov-on-Don, 344006

References

  1. Комплексные исследования больших морских экосистем России / Под ред. Г. Г. Матишова. Апатиты: Изд. КНЦ РАН, 2011. 516 с.
  2. Atlas of Climatic Changes in Nine Large Marine Ecosystems of the Northern Hemisphere (1827-2013) / G. G. Matishov, K. Sherman, S. Levitus. Eds. NOAA Atlas NESDIS 78. 131 p.
  3. Sherman K., Sissenwine M., Christensen V., et al. // Mar. Ecol. Progress Ser. 2005. V. 300. P. 275-279.
  4. Дашкевич Л. В., Бердников С. В., Голубев В. А. Комплексные исследования процессов, характеристик и ресурсов российских морей Северо-Европейского бассейна. В. 2. Апатиты: Изд-во КНЦ РАН, 2007. С. 64-103.
  5. Бердников С. В., Дашкевич Л. В., Лисунова Н. С., Каленченко М. М., Селютин В. В. // Рыб. хоз-во. 2010. № 6. С. 58-66.
  6. Christensen V., Walters C. J., Pauly D. Ecopath with Ecosim: A User’s Guide. Fisheries Centre, University of British Columbia, Vancouver, 2005. 154 p. Available online at www.ecopath.org.
  7. Бирюков П. А., Бердников С. В., Сурков Ф. А. // Геоинформатика. 2011. № 1. С. 10-16.
  8. CEEPRA - Collaboration Network on EuroArctic Enviromental Rediation Protection and Research. Final Report / T. Rasilainen. Ed. Säteilyturvakeskus, Kopijyvä Oy, Jyväskylä, 2014. 44 p.
  9. Шавыкин А. А., Матишов Г. Г., Карнатов А. Н. // ДАН. 2017. Т. 475. № 4. С. 461-464.
  10. Романкевич Е. А., Ветров А. А. Цикл углерода в арктических морях России. М.: Наука, 2001. 302 с.
  11. Slagstad D., Ellingsen I. H., Wassmann P. // Progress Oceanogr. 2011. V. 90. № 1. P. 117-131.
  12. Макаревич П. Р. // Вестн. МГТУ. 2012. Т. 15. № 4. С. 786-793.
  13. Gascuel D., Guénette S., Pauly D. // ICES J. Mar. Sci. 2011. V. 68. № 7. Р. 1403-1416.
  14. Борисов В. М. // Рыб. хоз-во. 2012. № 4. С. 21-23.
  15. Матишов Г. Г., Денисов В. В., Дженюк С. Л. // Изв. РАН. Сер. географическая. 2007. № 3. С. 27-40.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies