Heat capacity and thermodynamic properties of SmFeGe2O7 in the range 350-1000 K

Cover Page

Cite item

Full Text

Abstract

SmFeGe2O7 germanate was obtained by solid-state reactions from stoichiometric mixtures of starting oxides with multistage firing within 1273-1473 K. The effect of temperature on the heat capacity of the compound was studied using differential scanning calorimetry. Based on the dependence Cp = f(T), its thermodynamic properties are calculated.

About the authors

L. T. Denisova

Siberian Federal University

Author for correspondence.
Email: antluba@mail.ru
Russian Federation, 79, Svobodny avenue, Krasnoyarsk, 660041

A. D. Izotov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: antluba@mail.ru

Corresponding Member of the Russian Academy of Sciences

Russian Federation, 31, Leninsky prospekt, Moscow,119991

Y. F. Kargin

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences

Email: antluba@mail.ru
Russian Federation, 49, Leninskii Prospect, Moscow, 119334

L. A. Irtugo

Siberian Federal University

Email: antluba@mail.ru
Russian Federation, 79, Svobodny avenue, Krasnoyarsk, 660041

V. V. Beletskiy

Siberian Federal University

Email: antluba@mail.ru
Russian Federation, 79, Svobodny avenue, Krasnoyarsk, 660041

N. V. Belousova

Siberian Federal University

Email: antluba@mail.ru
Russian Federation, 79, Svobodny avenue, Krasnoyarsk, 660041

V. M. Denisov

Siberian Federal University

Email: antluba@mail.ru
Russian Federation, 79, Svobodny avenue, Krasnoyarsk, 660041

References

  1. Демьянец Л.Н., Лобачев А. Н., Емельченко Г. А. Германаты редкоземельных элементов. М.: Наука, 1980. 152 с.
  2. Cascales C., Fernandez-Diaz M.T., Monge M. A., Bucio L. // Chem. Mater. 2002. V. 14. P. 1885-2003.
  3. Juarez-Arellano E.A., Campa-Molina J., Ulloa-Godinez S., et al. // Mater. Res. Soc. Symp. Proc. 2005. V. 848. P. FF6.15.1-FF6.15.8.
  4. Миль Б.Д., Казей З. А., Рейман С. И. и др. // Вестн. МГУ. Сер. 3. Физика, астрономия. 1987. Т. 28. № 4. С. 95-98.
  5. Bucio L., Cascales C., Alonso J. A., Rasines I. // J. Phys.: Condens. Matter. 1996. V. 8. P. 2641-2653.
  6. Дрокина Т.В., Петраковский Г. А., Великанов Д. А., Молокеев М. С. // ФТТ. 2014. Т. 56. № 6. С. 1088-1092.
  7. Штин С.В., Лыкасов А. А. // Изв. вузов. Цв. металлургия. 2013. № 5. С. 12-16.
  8. Becker U.W., Felsche J. // J. Less-Common Metals. 1987. V. 128. P. 269-280.
  9. Денисова Л.Т., Изотов А. Д., Каргин Ю. Ф. // ДАН. 2017. Т. 477. № 3. С. 313-315.
  10. Денисова Л.Т., Иртюго Л. А., Каргин Ю. Ф. и др. // Неорган. материалы. 2017. Т. 53. № 1. С. 71-73.
  11. Shannon R.D. // Acta Crystallogr. 1976. V. A32. P. 751-767.
  12. Денисова Л.Т., Иртюго Л. А., Каргин Ю. Ф. и др. // Неорган. материалы. 2018. Т. 54. № 2. С. 193-196.
  13. Leitner J., Chuchvalec P., Sedmidysky D., et al. // Thermochim. Acta. 2003. V. 295. P. 27-46.
  14. Кумок В.Н. В кн.: Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108-123.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies