Exothermic synthesis and consolidation of single-phase ultra-high temperature composite Ta4ZrC5

Cover Page

Cite item

Full Text

Abstract

The paper presents the experimental results of possibility obtaining ultra-high temperature composite Ta4ZrC5 using a single-stage method. The method is based on the use of exothermic synthesis of refractory compounds by electro-thermal explosion (ETE) and their consolidation under conditions of quasi-isostatic compression. The effect of mechanical activation of the reaction mixture of tantalum, zirconium and carbon powders on the formation of the phase composition of the ceramic composite Ta4ZrC5 was studied. The conditions for obtaining a single-phase ultra-high temperature composites had were determined. The composites were prepared with the average particle size of 1-2 µm and a residual porosity of 8-10%.

About the authors

V. A. Shcherbakov

Merzhanov Institute of Structural Macrokinetics and Materials Science

Author for correspondence.
Email: vladimir@ism.ac.ru
Russian Federation, 142432, Moscow Region, Chernogolovka, Academician Osypian street, 8

A. N. Gryadunov

Merzhanov Institute of Structural Macrokinetics and Materials Science

Email: vladimir@ism.ac.ru
Russian Federation, 142432, Moscow Region, Chernogolovka, Academician Osypian street, 8

S. G. Vadchenko

Merzhanov Institute of Structural Macrokinetics and Materials Science

Email: vladimir@ism.ac.ru
Russian Federation, 142432, Moscow Region, Chernogolovka, Academician Osypian street, 8

M. I. Alymov

Merzhanov Institute of Structural Macrokinetics and Materials Science

Email: vladimir@ism.ac.ru

Corresponding Member of the Russian Academy of Sciences

Russian Federation, 142432, Moscow Region, Chernogolovka, Academician Osypian street, 8

References

  1. Agte C., Alterthum H. // Z. Techn. Phys. 1930. 11(6). P. 182-191.
  2. Andrievskii R.A., Strel’nikova N.S., Poltoratskii N.I., et al. // Sov. Powder Metall. Met. Ceram. 1967. V. 6. Iss. 1. P. 65-67.
  3. Gusev A.I. // Russ. J. Physical Chemistry. 1985. V. 59. № 3. P. 336-340.
  4. Симоненко Е.П., Игнатов Н.А., Симоненко Н.П. и др. // Журнал неорганической химии. 2011. Т. 56. № 11. С. 1763-1769.
  5. Patsera E.I., Levashov E.A., Kurbatkina V.V., et al. // Ceram. Int. 2015. V. 41. № 7. P. 8885-8893.
  6. Kurbatkina V.V., Patsera E.I., Levashov E.A., et al. // Adv. Eng. Mater. 2018. V. 20. № 8. Р. 1701075.
  7. Vorotilo S., Sidnov K., Mosyagin I.Y., Khvan A.V., Levashov E.A., et al. // J. Alloys Compd. 2019. V. 778. P. 480-486.
  8. Щербаков В.А., Щербаков А.В., Бостанджиян С.А. // Физика горения и взрыва. 2019. № 1. C. 83-91.
  9. Ghaffari S.A., Faghihi-Sani M.A., Golestani-Fard F., Nojabayy M. // Int. J. Refract. Met. Hard Mater. 2013. V. 41. P. 180-184.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies