Results of applicability analysis of satellite observations and reanalysis data for autonomous photovoltaic unit simulation

Cover Page

Abstract


The accuracy analysis of energy performance prediction of autonomous photovoltaic units using various climate databases (NASA POWER, SARAH-E, CLARA-A, ERA5, Meteonorm, etc.) for some geographic points in Russia was performed by comparing with calculations using data of World Radiation Data Center. It is shown that the considered databases provide a spread of predictions of the required power of solar battery at the level of 10-20% only when solar fraction is less than 70%. For larger solar fraction, the prediction error of the required power of solar battery can reach hundreds of percent.


About the authors

S. E. Frid

Joint Institute of High Temperature of the Russian Academy of Sciences

Author for correspondence.
Email: s_frid@oivtran.ru

Russian Federation, 13/19, Izhorskaya street, Moscow, 125412

N. V. Lisitskaya

Joint Institute of High Temperature of the Russian Academy of Sciences

Email: s_frid@oivtran.ru

Russian Federation, 13/19, Izhorskaya street, Moscow, 125412

O. S. Popel

Joint Institute of High Temperature of the Russian Academy of Sciences

Email: s_frid@oivtran.ru

Russian Federation, 13/19, Izhorskaya street, Moscow, 125412

References

  1. Фортов В.Е., Попель О.С. Возобновляемая энергетика в современном мире. М.: Издательский дом МЭИ, 2015.
  2. МЦРД. Доступно по http://wrdc.mgo.rssi.ru/wwwrootnew/wrdc_ru_new.htm. Ссылка активна на 18 июня 2019 г.
  3. NASA Prediction of Worldwide Energy Resources. Доступно по https://power.larc.nasa.gov/. Ссылка активна на 18 июня 2019 г.
  4. CM SAF - Product navigator. Доступно по https://wui.cmsaf.eu/safira/action/viewProduktSearch. Ссылка активна на 18 июня 2019 г.
  5. Copernicus. ERA5 hourly data on single levels from 1979 to present. Доступно по https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview. Ссылка активна на 18 июня 2019 г.
  6. Bojanowski J.S., Vrieling A., Skidmore A.K. A comparison of data sources for creating a long-term time series of daily gridded solar radiation for Europe // Solar Energy. 2014. V. 99. P. 152-171.
  7. Urraca R., Huld T., Cracia-Amillo A., et al. Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data // Solar Energy. 2018. V. 164. P. 339-354.
  8. Попель О.С., Фрид С.Е., Коломиец Ю.Г. и др. Атлас ресурсов солнечной энергии на территории России. М.: Изд-во МФТИ, 2010.
  9. Даффи Дж., Бекман У. Основы солнечной теплоэнергетики. Долгопрудный: Издательский дом “Интеллект”, 2013.
  10. Meteonorm. Irradiation data for every place on Earth. Доступно по: https://meteonorm.com/en/. Ссылка активна на 18 июня 2019 г.

Statistics

Views

Abstract - 150

PDF (Russian) - 105

PlumX


Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies