An impact of atmospheric and climate changes on the energy potential of Russian forest resources

Cover Page


Biofuels are an important source of energy, currently providing about 10% of the world energy demand, including 2% of power generation and 2.5% of liquid fuel consumption. Wood fuel in Russia is one of the most affordable and most important source of renewable energy resources. In this paper, the possible changes of energy potential of the forest resources of Russia induced by changes in the atmosphere composition and climate are studied. The estimates of changes of the global carbon dioxide concentrations and mean annual air temperature across the Russian territory for the period up to 2050 are presented, simulated using global carbon cycle model and regional climate model developed in MPEI. It is projected that the change of net primary production of Russian forests due to an increase of CO2 abundance in the atmosphere and raising both air temperature and precipitation will increase available energy resources of wood fuel at the mid-century by up to 30% or more than 9 million tce/year.

About the authors

V. V. Klimenko

National Research University Moscow Power Engineering Institute

Author for correspondence.

Russian Federation, 14, Krasnokazarmennaya street, Moscow, 111250

Corresponding Member of the Russian Academy of Sciences

A. G. Tereshin

National Research University Moscow Power Engineering Institute


Russian Federation, 14, Krasnokazarmennaya street, Moscow, 111250

O. V. Mikushina

National Research University Moscow Power Engineering Institute


Russian Federation, 14, Krasnokazarmennaya street, Moscow, 111250


  1. Левин А.Б., Суханов В.С., Шереметьев Д.В. // Лесной вестник. 2010. № 4. С. 37-42.
  2. Кракснер Ф., Ледук С., Фусс С., Щепащенко Д.Г., Швиденко А.З. // Сибирский лесной журнал. 2018. № 1. С. 16-25.
  3. Gustavsson L., Haus S., Lundblad M., Lundström A., Ortiz C.A., Sathre R., Le Truong N., Wikberg P.-E. // Renewable and Sustainable Energy Reviews. 2017. V. 67. P. 612-624.
  4. Giuntoli J., Agostini A., Caserini S., Lugato E., Baxter D., Ma-rel-li L. // Biomass and Bioenergy. 2016. V. 89. P. 146-158.
  5. Замолодчиков Д., Краев Г. // Устойчивое лесопользование. 2016. № 4. С. 23-31.
  6. Колесников И.В., Велищанский В.М., Литвиненко Б.Д., Локшин М.М., Некрасов Н.С., Акимов В.М., Гиряев М.Д. Лесопользование в Российской Федерации в 1946-1992 гг. М.: Рослесхоз, 1996. 313 с.
  7. Прогноз развития лесного сектора Российской Федерации до 2030 года / Ред. М. Лобовиков и А. Петров. Продовольственная и сельскохозяйственная организация Объединенных наций. Рим: ФАО, 2012. 96 с.
  8. Кобак К.И. Биотические компоненты углеродного цикла. Л.: Гидрометеоиздат, 1988. 248 с.
  9. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Pachauri R.K. and Meyer L.A. (eds.). IPCC, Geneva, Switzerland. 151 p.
  10. Schaphoff S., Reyera C.P.O., Schepaschenko D., Gertena D., Shvidenko A. // Forest Ecology and Management. 2016. V. 361. P. 432-444.
  11. Klimenko A.V., Klimenko V.V., Fyodorov M.V., Sny-tin S.Yu. // Proc. of the 5th International Energy Conference. Seoul, Korea. 1993. V. 5. P. 56-61.
  12. Клименко В.В., Клименко А.В., Микушина О.В., Терешин А.Г. // ДАН. 2016. Т. 468. № 5. С. 521-524.
  13. Клименко В.В., Клименко А.В., Терешин А.Г. // Изв. РАН. Физика атмосферы и океана. 2015. Т. 51. № 2. С. 158-168.
  14. Klimenko V.V., Mikushina O.V., Tereshin A.G. // Proc. SPIE 10466, 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics; 2017. doi: 10.1117/12.2287753.
  15. Klimenko V.V., Fedotova E.V., Tereshin A.G. // Energy. 2018. V. 142. P. 1010-1022. doi: 10.1016/



Abstract - 216

PDF (Russian) - 103


Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies