Role of oxidation of XRCC1 protein in regulation of mammalian DNA repair process

Cover Page

Cite item

Full Text

Abstract

Influence of XRCC1 protein oxidation on the modification of proteins catalyzed by poly(ADP‑ribose)polyme-rases (PARP1 and PARP2) has been studied for the first time. XRCC1, PARP1 and PARP2 are responsible for coordination of multistep repair of most abundant DNA lesions, functioning as scaffold proteins. We have shown that the XRCC1 oxidation reduces the efficiency of its ADP‑ribosylation and the protein affinity for poly(ADP‑ribose). The ADP‑ribose modification of various XRCC1 forms is enhanced in the presence of DNA polymerase b (Polb) capable to form a stable complex with XRCC1. The oxidation suppresses the inhibiting activity of XRCC1 and its complex with Polb towards the automodification of PARP1 and PARP2 that may enhance the efficiency of repair. The results of this study indicate that the oxidation of XRCC1 play a role in fine regulation of poly(ADP‑ribosyl)ation levels of proteins and their coordinating functions in the DNA repair.

About the authors

I. A. Vasil’eva

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences

Email: lavrik@niboch.nsc.ru
Russian Federation, 8, Lavrentyeva prospect, Novosibirsk, 630090

N. A. Moor

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences

Email: lavrik@niboch.nsc.ru
Russian Federation, 8, Lavrentyeva prospect, Novosibirsk, 630090

O. I. Lavrik

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: lavrik@niboch.nsc.ru

Corresponding Member of the Russian Academy of Sciences

Russian Federation, 8, Lavrentyeva prospect, Novosibirsk, 630090

References

  1. Abbotts R., Wilson 3rd D. M. Coordination of DNA Single Strand Break Repair // Free Radic. Biol. Med. 2017. V. 107. P. 228-244. doi: 10.1016/j.freeradbiomed.2016.11.039.
  2. Моор Н. А., Лаврик О. И. Белок-белковые взаимодействия системы эксцизионной репарации оснований ДНК // Биохимия. 2018. T. 83. В. 4. С. 564-576.
  3. London R. E. The Structural Basis of XRCC1-Mediate DNA Repair // DNA Repair (Amst). 2015. V. 30. P. 90-103. doi: 10.1016/j.dnarep.2015.02.005.
  4. Horton J. K., Stefanick D. F., Gassman N. R., et al. Preventing Oxidation of Cellular XRCC1 Affects PARP-Mediated DNA Damage Responses // DNA Repair (Amst). 2013. V. 12. № 9. P. 774-785. doi: 10.1016/j.dnarep.2013.06.004.
  5. Horton J. K., Seddon H. J., Zhao M. L., et al. Role of the Oxidized form of XRCC1 in Protection Against Extreme Oxidative Stress // Free Radic Biol Med. 2017. V. 107. P. 292-300. doi: 10.1016/j.freeradbiomed. 2017.02.005.
  6. Masson M., Niedergang C., Schreiber V., et al. XRCC1 is Specifically Associated with Poly(ADP ribose) Polymerase and Negatively Regulates Its Activity Following DNA Damage // Mol. Cell Biol. 1998. V. 18. P. 3563-3571. doi: 10.1128/mcb.18.6.3563.
  7. Ohashi Y., Itaya A., Tanaka Y., et al. Poly(ADP-ribosyl)ation of DNA Polymerase  in vitro. Biochem. Biophys. Res. Commun. 1986. V. 140. № 2. P. 666-673. doi: 10.1016/0006-291x(86)90783-7.
  8. Moor N. A., Vasil’eva I.A., Anarbaev R. O., et al. Quantitative Characterization of Protein-Protein Complexes Involved in Base Excision DNA Repair // Nucleic Acids Res. 2015. V. 43. P. 6009-6022. doi: 10.1093/nar/gkv569.
  9. Belousova E. A., Vasil’eva I.A., Moor N. A., et al. Clustered DNA Lesions Containing 5-Formyluracil and AP Site: Repair via the BER System // PLoS One. 2013. V. 8. P. e68576. doi: 10.1371/journal.pone. 0068576.
  10. Kumar A., Widen S. G., Williams K. R., et al. Studies of the Domain Structure of Mammalian DNA Polymerase β. Identification of a Discrete Template Binding Domain // J. Biol. Chem. 1990. V. 265. № 4. P. 2124-2131.
  11. Vasil’eva I.A., Anarbaev R. O., Moor N. A., et al. Dynamic Light Scattering Study of Base Excision DNA Repair Poteins and Their Complexes // Biochim. Biophys. Acta Proteins Proteom. 2019. V. 1867. № 3. P. 297-305. doi: 10.1016/j.bbapap.2018.10.009.
  12. Alvarez-Gonzalez R., Jacobson M. K. Characterization of Polymers of Adenosine Diphosphate Ribose Gene-rated in vitro and in vivo // Biochemistry. 1987. V. 26. № 11. P. 3218-3224. doi: 10.1021/bi00385a042.
  13. Chim N., Harmston C. A., Guzman D. J., et al. Structural and Biochemical Characterization of the Essential DsbA like Disulfide Bond Forming Protein from Mycobacterium Tuberculosis // BMC Struct. Biol. 2013. V. 13. P. 23. doi: 10.1186/1472-6807-13-23.
  14. Wunderlich M., Glockshuber R. Redox Properties of Protein Disulfide Isomerase (DsbA) from Escherichia coli // Protein Sci. 1993. V. 2. № 5. P. 717-726. doi: 10.1002/pro.5560020503.
  15. Polo L. M., Xu Y., Hornyak P., et al. Efficient Single-Strand Break Repair Requires Binding to Both Poly(ADP ribose) and DNA by the Central BRCT Domain of XRCC1 // Cell Rep. 2019. V. 26. № 3. P. 573-581.e5. doi: 10.1016/j.celrep.2018.12.082.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies