Development of a biocompatible, biodeshipple polymer for medicine and agriculture, able to long-term extract of bioactive substances
- Authors: Baikin А.C.1, Kaplan M.A.1, Nasakina E.O.1, Shatovа L.A.2, Tsareva A.M.1, Kolmakova A.A.1, Danilova E.A.1, Tishurova Y.A.3,4, Bunkin N.F.3,4, Gudkov S.V.4,5,6, Belosludtsev K.N.7, Glinushkin A.P.6, Kolmakov A.G.1, Sevostyanov M.A.1,6,8
-
Affiliations:
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
- Voronezh State Technical University
- Bauman Moscow State Technical University
- General Physics Institute of the Russian Academy of Sciences
- Lobachevsky State University of Nizhni Novgorod
- All-Russian Research Institute of Phytopathology
- Mari State University
- University “Dubna”, Branch “Ugresha”
- Issue: Vol 489, No 2 (2019)
- Pages: 152-156
- Section: Chemistry
- URL: https://journals.eco-vector.com/0869-5652/article/view/17931
- DOI: https://doi.org/10.31857/S0869-56524892152-156
- ID: 17931
Cite item
Full Text
Abstract
A team of authors developed a technology for producing biocompatible biodegradable polymer films based on high-molecular polylactide with the properties necessary for medical and agricultural use. A technology has been developed for the inclusion of active substances (gentamicin sulfate, lincomycin hydrochloride, cefotaxime) into films of high-molecular polylactide. The rate of release of active substances from polylactide can vary with time as a decaying exponent, as well as a function close to linear. The process of release of active substances is significantly affected by the pH of the surrounding film of the solution. It was found that the dynamics of release of active substances from biocompatible biodegradable polymer films created on the basis of high-molecular polylactide depends on the properties of the substance immobilized in the film, the technology of the film and the conditions under which the extraction is carried out. The technical parameters of biocompatible biodegradable polymer films based on high-molecular polylactide are quite suitable for the manufacture of coatings of stents and prostheses with prolonged and controlled release of drugs into the surrounding tissues, as well as for use in agriculture to increase the safety of the harvest.
About the authors
А. C. Baikin
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Author for correspondence.
Email: baikinas@mail.ru
Russian Federation, 49, Leninskii Prospect, Moscow, 119334
M. A. Kaplan
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: baikinas@mail.ru
Russian Federation, 49, Leninskii Prospect, Moscow, 119334
E. O. Nasakina
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: baikinas@mail.ru
Russian Federation, 49, Leninskii Prospect, Moscow, 119334
L. A. Shatovа
Voronezh State Technical University
Email: baikinas@mail.ru
Russian Federation, 14, Moscowsky prospekt, Voronezh, 394026
A. M. Tsareva
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: baikinas@mail.ru
Russian Federation, 49, Leninskii Prospect, Moscow, 119334
A. A. Kolmakova
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: baikinas@mail.ru
Russian Federation, 49, Leninskii Prospect, Moscow, 119334
E. A. Danilova
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: baikinas@mail.ru
Russian Federation, 49, Leninskii Prospect, Moscow, 119334
Ya. A. Tishurova
Bauman Moscow State Technical University; General Physics Institute of the Russian Academy of Sciences
Email: baikinas@mail.ru
Russian Federation, 5, 2-nd Baumanskaya, Moscow, 105005; 38, Vavilov street, Moscow, 119991
N. F. Bunkin
Bauman Moscow State Technical University; General Physics Institute of the Russian Academy of Sciences
Email: baikinas@mail.ru
Russian Federation, 5, 2-nd Baumanskaya, Moscow, 105005; 38, Vavilov street, Moscow, 119991
S. V. Gudkov
General Physics Institute of the Russian Academy of Sciences; Lobachevsky State University of Nizhni Novgorod; All-Russian Research Institute of Phytopathology
Email: baikinas@mail.ru
Russian Federation, 38, Vavilov street, Moscow, 119991; 23, Gagarin avenue, Nizhni Novgorod, 603600; 5, Institute street, Bolshie Vyazemy, Odintsovo district, Moscow region, 143050
K. N. Belosludtsev
Mari State University
Email: baikinas@mail.ru
Russian Federation, 1, Lenin Sq., Yoshkar-Ola, 424000
A. P. Glinushkin
All-Russian Research Institute of Phytopathology
Email: baikinas@mail.ru
Russian Federation, 5, Institute street, Bolshie Vyazemy, Odintsovo district, Moscow region, 143050
A. G. Kolmakov
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: baikinas@mail.ru
Corresponding Member of the Russian Academy of Sciences
Russian Federation, 49, Leninskii Prospect, Moscow, 119334M. A. Sevostyanov
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences; All-Russian Research Institute of Phytopathology; University “Dubna”, Branch “Ugresha”
Email: baikinas@mail.ru
Russian Federation, 49, Leninskii Prospect, Moscow, 119334; 5, Institute street, Bolshie Vyazemy, Odintsovo district, Moscow region, 143050; 24, Acad. Zhukov street, Dzerzhinsky, Moscow region, 140090
References
- Sevost’yanov M.A., Nasakina E. O., Baikin A. S., et al. // J. Mater. Sci. Mater. Med. 2018. V. 29. P. 33.
- Vu K. D., Hollingsworth R. G., Leroux E., et al. // Food Res. Int. 2011. V. 44. P. 198-203.
- Boo G. J., Grijpma D. W., Moriarty T. F., et al. // Biomaterials. 2015. V. 52. P. 113-125.
- Севостьянов М. А., Баикин А. С., Насакина Е. О. и др. // Успехи современного естествознания. 2016. № 5. С. 43-46.
- Gritsch L., Conoscenti G., La Carrubba V., et al. // Mater. Sci. Eng. C. 2019. V. 94. P. 1083-1101.
- Scaffaro R., Lopresti F., Marino A., et al. // Appl. Microbiol. Biotechnol. 2018. V. 102. P. 7739-7756.
- Майбородин И. В., Кузнецова И. В., Шевела А. И. и др. // Морфология. 2014. Т. 146. С. 78-89.
- Ezzat W. H., Keller G. S. // Facial. Plast. Surg. 2011. V. 27. P. 503-509.
- Saffer E. M., Tew G. N., Bhatia S. R. // Curr. Med. Chem. 2011. V. 18. P. 5676-5686.
- Shue L., Yufeng Z., Mony U. // Biomatter. 2012. V. 2. P. 271-277.
- Ehtezazi T., Washington C. // J. Control. Release. 2000. V. 68. P. 361-372.
- Xie J., Li A., Li J. // Macromol. Rapid. Commun. 2017. V. 38. P. 23.
- Gudkov S. V., Guryev E. L., Gapeyev A. B., et al. // Nanomedicine. 2019. V. 15. P. 37-46.
- Chernov A. S., Reshetnikov D. A., Kovalitskaya Yu.A., et al. // J. Photochem. Photobiol. B. 2018. V. 188. P. 77-86.
- Насакина Е. О., Баикин А. С., Сергиенко К. В. и др. // ДАН. 2015. Т. 461. № 1. С. 49-51.
