Copper-containing nanosystems based on macromolecular hydrophilic stabilizers

Cover Page

Cite item

Full Text

Abstract

An original method for the synthesis of copper-containing nanosystems for biomedical applications using hydrazine hydrate as a reducing agent, intermediate stage of formation of complex ion [Cu(NH3)4]2+, which allows to obtain Cu0 nanoparticles without impurities of oxides has been developed. As a macromolecular hydrophilic stabilizer copolymer of 2-deoxy‑2-methacrylamido-D‑glucose with 2-dimethylaminoethylmethaacrylate or bovine serum albumin were used. It has been shown that such stabilization allows to achieve almost unimodal distribution of copper nanoparticles in aqueous solutions due to their rather good shielding by macromolecules.

About the authors

S. V. Valueva

Institute of Macromolecular Compounds of the Russian Academy of Sciences

Author for correspondence.
Email: svalu67@mail.ru
Russian Federation, 31, Bolshoy prospect, St-Petersburg 199004

O. V. Nazarova

Institute of Macromolecular Compounds of the Russian Academy of Sciences

Email: svalu67@mail.ru
Russian Federation, 31, Bolshoy prospect, St-Petersburg 199004

M. E. Vylegzhanina

Institute of Macromolecular Compounds of the Russian Academy of Sciences

Email: svalu67@mail.ru
Russian Federation, 31, Bolshoy prospect, St-Petersburg 199004

L. N. Borovikova

Institute of Macromolecular Compounds of the Russian Academy of Sciences

Email: svalu67@mail.ru
Russian Federation, 31, Bolshoy prospect, St-Petersburg 199004

Yu. I. Zolotova

Institute of Macromolecular Compounds of the Russian Academy of Sciences

Email: svalu67@mail.ru
Russian Federation, 31, Bolshoy prospect, St-Petersburg 199004

E. F. Panarin

Institute of Macromolecular Compounds of the Russian Academy of Sciences; Peter the Great St.Petersburg Polytechnic University

Email: svalu67@mail.ru

Corresponding Member of the Russian Academy of Sciences

Russian Federation, 31, Bolshoy prospect, St-Petersburg 199004; 29, Polytechnitcheskaya street, St.-Petersburg, 195251

References

  1. Borkow G., Gabbay J. // Current Chemical Biology. 2009. V. 3. № 3. P. 272-278. DOI: 10.2174/ 2212796810903030272.
  2. Lansdown A.B.G., Sampson B., Rowe A. // J. Anat. 1999. V. 195. P. 375-386. doi: 10.1046/j.1469-7580. 1999.19530375.x.
  3. Shende S., Ingle A.P., Gade A., Rai M. // World Journal of Microbiology and Biotechnology. 2015. V. 31. № 6. P. 865-873. doi: 10.1007/s11274-015-1840-3.
  4. Halevas E.G., Pantazaki A.A. // Nanomed Nanotechnol J. 2018. V. 2. № 1. P. 119-125.
  5. Saharan V., Sharma G., Yadav M., Choudhary M.K., Sharma S.S., Pal A., Biswas P. // J. Biol. Macromol. 2015. V. 75. P. 346-353. doi: 10.1016/J.IJBIOMAC. 2015.01.027.
  6. Cioffi N., Torsi L., Ditaranto N. // Appl. Phys. Lett. 2004. V. 85. № 12. P. 2417-2419. DOI: 10.1063/ 1.1794381.
  7. Abd-Elsalam K.A., Vasil’kov A.Y., Said-Galiev E.E., Rubina M.S., Khokhlov A.R., Naumkin A.V., Shtykova E.V., Alghuthaymi M.A. // Eur. J. Plant Pathol. 2018. V. 151. P. 57-72. doi: 10.1007/S10658-017-1349-8.
  8. Mekahlia S., Buzid B. // Physics Procedia. 2009. V. 2. P. 1045-1053. doi: 10.1016/J.PHPRO.2009.11.061.
  9. Korzhikov V., Diederichs S., Nazarova O.V., Vlakh E., Kasper C., Panarin E., Tennikova T. // J. Appl. Polymer Sci. 2008. V. 108. № 4. P. 2386-2397. doi: 10.1002/APP.27292.
  10. Nazarova O.V., Leontyeva E.A., Nekrasova T.N., et al. // J. Carbohydrate Chem. 2009. V. 28. № 1. P. 37-50. doi: 10.1080/07328300802638480.
  11. Guzmana A., Arroyoa J., Verdea L., Rengifoa J. // Procedia Materials Science. 2015. V. 9. P. 298-304. doi: 10.1016/J.MSPRO.2015.04.038.
  12. Sundaramurthy N., Parthiban C. // Int. Res. J. Eng. Technol. 2015. V. 2. № 6. P. 332-338.
  13. Rodriguez O.P., Pal.U. // J. Opt. Soc. Am. (B). 2008. V. 28. № 11. P. 2735-273. doi: 10.1364/JOSAB.28. 002735.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies