Numerical modelling of wave processes in multilayered media with gas-containing layers: the comparison of 2D and 3D models

Cover Page

Cite item

Full Text

Abstract

Today the Arctic region exploration is one of the most important courses for research in our country because large amounts of unexplored oil and gas deposits are located there. Large deposits of hydrocarbons are situated in water areas of the North seas. Gas explosions complicate the development of hydrocarbon deposits in these water areas. They occur as a result of an accidant opening and further spread of gas. It is impossible to carry out the frequent exploration of the area with gas layers, then the numerical modelling of the area with already detected gas deposits is conducted. In this work, we present the results of numerical modelling of seismic waves spread in multilayered geological models with gas-containing inclusions during the four-year period with the use of the grid-characteristic method. Then, the wave patterns of seismic reflections and seismograms for the described problem were obtained. We conducted the comparison of wave patterns and seismograms for the 2-dimensional and 3-dimensional cases. The results demonstrated a good coincidence.

About the authors

P. V. Stognii

Moscow Institute of Physics and Technology

Author for correspondence.
Email: stognii@phystech.edu
Russian Federation, 9, Institutskij, Dolgoprudny, Moscow region, 141701

N. I. Khokhlov

Moscow Institute of Physics and Technology; Federal State Institution «Scientific Research Institute for System Analysis of the Russian Academy of Sciences»

Email: k_h@inbox.ru
Russian Federation, 9, Institutskij, Dolgoprudny, Moscow region, 141701; 36-1, Nakhimovsky prospect, Moscow, 117218

I. B. Petrov

Moscow Institute of Physics and Technology; Federal State Institution «Scientific Research Institute for System Analysis of the Russian Academy of Sciences»

Email: petrov@miph.ru

Corresponding Member of the Russian Academy of Sciences

Russian Federation, 9, Institutskij, Dolgoprudny, Moscow region, 141701; 36-1, Nakhimovsky prospect, Moscow, 117218

References

  1. Goodway W., Enachescu M. Introduction to this Special Section: Arctic/ATC. The Leading Edge. 2013. V. 32. № 5. P. 522-523.
  2. Фаворская А.В., Петров И.Б. и др. Численное моделирование волновых процессов в слоистых средах в условиях Арктики // Матем. моделирование. 2015. Т. 27. № 11. С. 63-75.
  3. Петров И.Б. Вычислительные проблемы моделирования природных и индустриальных процессов в Арктической зоне Российской Федерации // Чебышевский сб. 2017. Т. 18. № 3. С. 428-443.
  4. Богоявленский В.И., Керимов В.Ю., Ольховская О.О. и др. Повышение эффективности и безопасности поисков, разведки и разработки месторождений нефти и газа на акватории Охотского моря // Территория “НЕФТЕГАЗ”. 2016. № 10. С. 24-32.
  5. Новацкий В. Теория упругости. М.: Мир, 1975. 872 с.
  6. Muratov M., Petrov I., Leviant V. Grid-Characteristic Method as Optimal Tool of Fracture Formations Research. Saint Petersburg 2018: Innovations in Geosciences, 2018. doi: 10.3997/2214-4609.201800290.
  7. Магомедов К.М., Холодов А.С. Сеточно-характеристические численные методы. М.: Наука, 1988. 288 с.
  8. Khokhlov N.I., Golubev V.I. On the Class of Compact Grid-Characteristic Schemes // Smart Innovation, Systems and Technologies. 2019. V. 133. P. 64-77. doi: 10.1007/978-3-030-06228-6_7.
  9. Petrov I., Favorskaya A., Favorskaya M., et al. Development and Applications of Computational Methods // Smart Innovation, Systems and Technologies. 2019. V. 133. P. 3-7. doi: 10.1007/978-3-030-06228- 6_1.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies