Mechanism of detonation formation as a result of free flame propagation in unconfined space

Cover Page

Cite item

Full Text

Abstract

The problem of the detonation formation as a result of unconfined flame propagation is solved numerically. The mechanism of detonation formation is distinguished. It is related to the local formation of shock waves du- ring the linear stage of development of flame front perturbations formed on the surface of the expanding flame front. General criteria of the establishment of the conditions for the detonation transition via the proposed mechanism are formulated.

About the authors

A. D. Kiverin

Joint Institute of High Temperature of the Russian Academy of Sciences

Author for correspondence.
Email: alexeykiverin@gmail.com
Russian Federation, 13/19, Izhorskaya street, Moscow, 125412

I. S. Yakovenko

Joint Institute of High Temperature of the Russian Academy of Sciences

Email: alexeykiverin@gmail.com
Russian Federation, 13/19, Izhorskaya street, Moscow, 125412

V. E. Fortov

Joint Institute of High Temperature of the Russian Academy of Sciences

Email: alexeykiverin@gmail.com

Academician of the Russian Academy of Sciences

Russian Federation, 13/19, Izhorskaya street, Moscow, 125412

References

  1. Зельдович Я.Б., Розловский А.И. // ДАН. 1947. Т. 57. № 4. С. 365-368.
  2. Зельдович Я.Б. // ЖТФ. 1947. Т. 17. № 3. С. 3-26.
  3. Kiverin A., Yakovenko I., Ivanov M. // Int. J. Hydrogen Energy. 2016. V. 41. Is. 47. P. 22 465-22 478. doi: 10.1016/j.ijhydene.2016.10.007.
  4. Иванов М.Ф., Киверин А.Д., Либерман М.А., Фортов В.Е. // ДАН. 2010. Т. 434. № 6. С. 756-759. doi: 10.1134/S1028335810100022.
  5. Kiverin A., Yakovenko I. // Mathematical Modelling of Natural Phenomena. 2018. V. 13. P. 54. doi: 10.1051/mmnp/2018071.
  6. Smirnov N.N., Tyurnikov M.V. // Combust. Flame. 1995. V. 100. Is. 4. P. 661-668. doi: 10.1016/0010-2180(94)00151-H.
  7. Kellenberger M., Ciccarelli G. // Proc. Combust. Inst. 2015. V. 35. Is. 2. P. 2109-2116. doi: 10.1016/j.proci.2014.08.002.
  8. Гостинцев Ю.А., Истратов А.Г., Шуленин Ю.В. // ФГВ. 1988. Т. 5. С. 63-70. doi: 10.1007/BF00755496.
  9. Liberman M.A., Ivanov M.F., Peil O.E., et al. // Physics of Fluids. 2004. V. 16. P. 2476. doi: 10.1063/1.1729852.
  10. Bauwens C.R.L., Bergthorson J.M., Dorofeev S.B. // Proc. Combust. Inst. 2019. V. 37. Is. 3. P. 3669-3676. doi: 10.1016/j.proci.2018.07.098.
  11. Koksharov A., Bykov V., Kagan L., et al. // Combust. Flame. 2018. V. 195. P. 163-169. doi: 10.1016/j.combustflame.2018.03.006.
  12. Karabasov S.A., Goloviznin V.M. // J. Comput. Physics. 2009. V. 228. Is. 19. P. 7426-7451. doi: 10.1016/j.jcp.2009.06.037.
  13. Kiverin A., Yakovenko I. // Combust. Flame. 2019. V. 204. P. 227-236. doi: 10.1016/j.combustflame.2019.03.012.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies