Effects of crystallinity on sintering of metal nanoparticles

Cover Page

Abstract


Regularities and mechanisms of coalescence of Au nanodroplets and sintering of solid Au nanoparticles have been investigated by using molecular dynamics and some theoretical models. It has been established that the characteristic time of coalescence t is proportional to radius r0 of initial nanodroplets. Both the above conclusion and some quantitative estimations of the proportionality coefficient between t and r0 agree with Frenkel’s theory (1946) though this theory was rut forward to describe coalescence of macroscopic droplets.


About the authors

V. M. Samsonov

Tver State University

Author for correspondence.
Email: samsonoff@inbox.ru

Russian Federation, 33, Zheliabova street, Tver, 170100

I. V. Talyzin

Tver State University

Email: samsonoff@inbox.ru

Russian Federation, 33, Zheliabova street, Tver, 170100

S. A. Vasilyev

Tver State University; Merzhanov Institute of Structural Macrokinetics and Material Sciences

Email: samsonoff@inbox.ru

Russian Federation, 33, Zheliabova street, Tver, 170100; 142432, Moscow Region, Chernogolovka, Academician Osypian street, 8

M. I. Alymov

Merzhanov Institute of Structural Macrokinetics and Material Sciences

Email: samsonoff@inbox.ru

Russian Federation, 142432, Moscow Region, Chernogolovka, Academician Osypian street, 8

Corresponding Member of the Russian Academy of Sciences

References

  1. Sauerwald F. Über die Elementarvorgänge beim Fritten und Sintern von Metallpulvern mit besonderer Berücksichtigung der Realstruktur ihrer Oberflächen // Kolloid-Zeitschrift. 1943. V. 104. I. 2-3. P. 144-160.
  2. Френкель Я. Вязкое течение в кристаллических телах // ЖЭТФ. 1946. Т. 16. В. 1. С. 29-38.
  3. Гегузин Я.Е. Физика спекания. М.: Наука, 1984.
  4. Пинес Б.Я. Спекание, крип, отдых, рекристаллизация, обусловленные самодиффузией в кристаллических телах // Успехи физических наук. 1954. Т. 52. В. 4. С. 501-559.
  5. Ивенсен В.А. Феноменология спекания и некоторые вопросы теории. М.: Металлургия, 1985.
  6. Алымов М.И. Рост перешейка при спекании сферических частиц // Физика и химия обработки материалов. 1999. № 3. C. 60-64.
  7. Алымов М.И., Аверин С.И., Тихомиров С.А. и др. Влияние температуры отжига на минимальный размер металлических наночастиц // Металлы. 2005. № 5. С. 59-62.
  8. Lewis J.L., Jensen P., Barrat J.-L. Melting, Freezing, and Coalescence of Gold Nanoclusters // Physical Review B. 1997. V. 56. P. 2248-2257.
  9. Goudeli E., Pratsinis S.E. Crystallinity Dynamics of Gold Nanoparticles during Sintering or Coalescence // AIChE J. 2015. V. 62. I. 2. P. 589-598.
  10. Nichols F.A., Mullins W.W. Morphological Changes of a Surface of Revolution due to Capillarity Induced Surface Diffusion // J. Applied Physics. 1965. V. 36. P. 1826-1835.
  11. Yuk J.M., Jeong M., Kim S.Y., et al. In situ Atomic Imaging of Coalescence of Au Nanoparticles on Graphene: Rotation and Grain Boundary Migration // Chem. Communications. 2013. V. 49. I. 98. P. 11 479-11 481.
  12. Surrey A., Pohl D., Schultz L., et al. Quantitative Measurement of the Surface Self-Diffusion on Au Nanoparticles by Aberration-Corrected Transmission Electron Microscopy // Nano Letters. 2012. V. 12. I. 12. P. 6071-6077.
  13. Adams J.B., Foiles S.M., Wolfer W.G. Self-Diffusion and Impurity Diffusion of fcc Metals Using the Five-Frequency Model and the Embedded Atom Method // J. Materials Research. 1989. V. 4. I. 1. P. 102-112.
  14. Alchagirov A.B., Alchagirov B.B., Taova T.M., et al. Surface Energy and Surface Tension of Solid and Li-quid Metals. Recommended Values // Transactions of JWRI. 2001. V. 30. P. 287-291.
  15. Ofte D. The Viscosities of Liquid Uranium, Gold and Lead // J. Nuclear Materials. 1967. V. 22. I. 1. P. 28-32.

Statistics

Views

Abstract - 78

PDF (Russian) - 68

PlumX


Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies