On the Gardner Problem for the Phase-Locked Loops

Cover Page

Abstract


This report shows the possibilities of solving the Gardner problem of determining the lock-in range for multidimensional phase-locked loops systems. The development of analogs of classical stability criteria for the cylindrical phase space made it possible to obtain analytical estimates of the lock-in range for third-order system.


About the authors

N. V. Kuznetsov

Saint-Petersburg State University; Institute of Problems in Mechanical Engineering of Russian Academy of Sciences; University of Jyväskylä

Author for correspondence.
Email: n.v.kuznetsov@spbu.ru

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034; V.O., Bol'shoy prospect, 61, St. Petersburg, 199178; 15, Seminaarinkatu, Jyväskylä, 40014

M. Y. Lobachev

Saint-Petersburg State University

Email: n.v.kuznetsov@spbu.ru

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

M. V. Yuldashev

Saint-Petersburg State University

Email: n.v.kuznetsov@spbu.ru

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

R. V. Yuldashev

Saint-Petersburg State University

Email: n.v.kuznetsov@spbu.ru

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

References

  1. Шахгильдян В.В., Ляховкин А.А. Системы фазовой автоподстройки частоты. М.: Связь, 1972.
  2. Шахтарин Б.И., Сидоркина Ю.А., Асланов Т.Г. Анализ воздействия гармонической помехи на схему Костаса // Науч. вестник МГТУ ГА. 2015. Т. 222. № 12. С. 59-66.
  3. Leonov G., Kuznetsov N., Yuldashev M., et al. Hold-In, Pull-In, and Lock-In Ranges of PLL Circuits: Rigorous Mathematical Definitions and Limitations of Classical Theory // IEEE Transactions on Circuits and Systems-I: Regular Papers. 2015. V. 62. № 10. P. 2454-2464.
  4. Красовский Н.Н. Некоторые задачи теории устойчивости движения. М.: Физматлит, 1959.
  5. Матросов В.М. Метод векторных функций Ляпунова: анализ динамических свойств нелинейных систем. М.: Физматлит, 2001.
  6. Leonov G.A., Kuznetsov N.V. Nonlinear Mathematical Models of Phase-Locked Loops. Stability and Oscillations. Cambridge: Cambridge Scientific Publishers, 2014.
  7. Васильев С.Н., Козлов Р.И., Ульянов С.А. Устойчивость многорежимных формаций // ДАН. 2014. Т. 455. № 3. С. 269-274.
  8. Khalil H.K. Nonlinear Systems. N.J.: Prentice Hall, 2002.
  9. Abramovitch D. Phase-Locked Loops: A Control Centric Tutorial / Proc. American Control Conference, IEEE. 2002. P. 1-15.
  10. Gardner F.M. Phaselock Techniques. 3rd ed. Wiley, 2005.
  11. Best R., Kuznetsov N., Leonov G., et al. Tutorial on Dynamic Analysis of the Costas Loop // IFAC Annual Reviews in Control. 2016. V. 42. P. 27-49.
  12. Гелиг А.Х., Леонов Г.А., Якубович В.А. Устойчивость нелинейных систем с неединственным состоянием равновесия. М.: Наука, 1978.
  13. Abramovitch D. Analysis and Design of a Third Order Phase-Lock Loop / Proc. Conference record. Military Communications Conference. IEEE. 1988. P. 455-459.
  14. Alexandrov K., Kuznetsov N., Leonov G., et al. Pull-In Range of the PLL Based Circuits with Proportionally-Integrating Filter // IFAC-PapersOnLine. 2015. V. 48. № 11. P. 720-724.

Statistics

Views

Abstract - 409

PDF (Russian) - 266

PlumX


Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies