Bacterial film disintegration with electrochemically reduced water

Cover Page

Cite item

Full Text

Abstract

This work aimed to study the fine structure of bacterial films grown on the inner tuber surface of flow reactor. Applying scanning electron microscopy (SEM) approaches, the detailed biofilm relief was visualized. The action of electrochemically reduced water (ERW) on the biofilm ultrastructure generated by the plankton form of E.coli and/or lacto bacteria was investigated. Treatments with an ERW solution were exhibited to destroy the biofilm organic polymer matrix and bacterial cells embedded in a matrix.

About the authors

A. G. Pogorelov

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Author for correspondence.
Email: agpogorelov@rambler.ru
Russian Federation, 3, Institutskaya street, Pushchino, Moscow Region, 142290

A. L. Kuznetsov

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: agpogorelov@rambler.ru
Russian Federation, 3, Institutskaya street, Pushchino, Moscow Region, 142290

A. I. Panait

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: agpogorelov@rambler.ru
Russian Federation, 3, Institutskaya street, Pushchino, Moscow Region, 142290

M. A. Pogorelova

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: agpogorelov@rambler.ru
Russian Federation, 3, Institutskaya street, Pushchino, Moscow Region, 142290

O. A. Suvorov

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: agpogorelov@rambler.ru
Russian Federation, 3, Institutskaya street, Pushchino, Moscow Region, 142290

G. R. Ivanitskii

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: agpogorelov@rambler.ru

Corresponding Member of the Russian Academy of Sciences

Russian Federation, 3, Institutskaya street, Pushchino, Moscow Region, 142290

References

  1. Garrett T.R., Bhakoo M., Zhang Z. // Prog. Nat. Sci. 2008. V. 18. P. 1049-1056.
  2. Bakhir V.M., Pogorelov A.G. // Int. J. Pharm. Res. & Allied Sci. 2018. V. 7. P. 41-57.
  3. Shirtliff M.E., Mader J.T., Camper A.K. // Chem. Biol. 2000. V. 9. P. 859-871.
  4. Costerton J.W. // Int. J. Antimicrob. Agents. 1999. V. 11. P. 217-221.
  5. Bridier A., Briandet R., Thomas V., Dubois-Brissonnet F. // Biofouling. 2011. V. 27. P. 1017-1032.
  6. Nguyen D., Joshi-Datar A., Lepine F., Bauerle E., Olakanmi O., Beer K., McKay G., Siehnel R., Schafhauser J., Wang Y., Britigan B.E., Singh P.K. // Science. 2011. V. 334. P. 982-986.
  7. Drescher K., Shen Y., Bassler B.L., Stone H.A. // Proc. Natl. Acad. Sci. U.S.A.. 2013. V. 110. P. 4345-4350.
  8. D’Atanasio N., Capezzone de Joannon A., Mangano G., Meloni M., Giarratana N., Milanese C., Tongiani S. // Wounds. 2015. V. 27. P. 265-273.
  9. Cloete T.E., Thantsha M.S., Maluleke M.R., Kirkpatrick R. // J. Appl. Microbiol. 2009. V. 107. P. 379-384.
  10. Ludecke C., Jandt K.D., Siegismund D., Kujau M.J., Zang E., Rettenmayr M., Bossert J., Roth M. // PLoS One. 2014. V. 9. P. e84837-e84837.
  11. Crusz S.A., Popat R., Rybtke M.T., Cámara M., Givskov M., Tolker-Nielsen T., Diggle S.P., Williams P. // Biofouling. 2012. V. 28. P. 835-842.
  12. Rollet C., Gal L., Guzzo J. // FEMS Microbiol. Lett. 2009. V. 290. P. 135-142.
  13. Погорелов А.Г., Гаврилюк В.Б., Погорелова В.Н., Гаврилюк Б.К. // Клеточные технологии в биологии и медицине. 2012. № 3. С. 176-180.
  14. Погорелов А.Г., Чеботарь И.В., Погорелова В.Н. // Клеточные технологии в биологии и медицине. 2014. № 2. С. 133-136.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies