Метаморфические минеральные реакции и парагенезисы в породах Мейерской тектонической зоны (Юго-Восток Фенноскандинавского щита)
- Авторы: Вивдич Э.С.1,2, Балтыбаев Ш.К.1,3, Галанкина О.Л.1
-
Учреждения:
- Институт геологии и геохронологии докембрия РАН
- Санкт-Петербургский горный университет
- Санкт-Петербургский государственный университет
- Выпуск: Том 32, № 2 (2024)
- Страницы: 195-217
- Раздел: Статьи
- URL: https://journals.eco-vector.com/0869-5903/article/view/657790
- DOI: https://doi.org/10.31857/S0869590324020046
- EDN: https://elibrary.ru/DCRASR
- ID: 657790
Цитировать
Полный текст



Аннотация
В Мейерской тектонической зоне изучены минеральные реакции в метаморфических породах и восстановлен Р-Т тренд развития этой шовной структуры, по которой протерозойский гранулитовый комплекс Свекофеннского пояса был надвинут на низкотемпературные породы окраины архейского Карельского кратона. Находки реликтового ставролита и других минералов в виде включений в порфиробластах граната позволили выявить Р-Т параметры прогрессивной стадии метаморфизма. По составу реликтовых минералов в порфиробластах граната получены значения температуры 500–600°С при давлении около 5 кбар. Пиковые условия метаморфизма в Мейерской тектонической зоне составляют >700°С и ~7 кбар. Регрессивная стадия начиналась с декомпрессии при указанных выше температурах со сменой гранулитовых гиперстенсодержащих парагенезисов более низкотемпературными – амфиболсодержащими. Дальнейшее понижение Р-Т параметров метаморфизма сопровождалось активным образованием водосодержащих минералов как результата увеличения роли водного флюида в сдвиговой зоне. Тренд эволюции Р-Т параметров пород тектонической зоны направлен “по часовой стрелке” и отражает эксгумацию свекофеннского гранулитового комплекса в ходе орогенеза.
Полный текст

Об авторах
Эмилия Сергеевна Вивдич
Институт геологии и геохронологии докембрия РАН; Санкт-Петербургский горный университет
Автор, ответственный за переписку.
Email: emily.vivdich@yandex.ru
геологоразведочный факультет
Россия, Санкт-Петербург; Санкт-ПетербургШаукет Каимович Балтыбаев
Институт геологии и геохронологии докембрия РАН; Санкт-Петербургский государственный университет
Email: shauket@mail.ru
Институт наук о Земле
Россия, Санкт-Петербург; Санкт-ПетербургОльга Леонидовна Галанкина
Институт геологии и геохронологии докембрия РАН
Email: galankinaol@mail.ru
Россия, Санкт-Петербург
Список литературы
- Berman R.G. Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2 // J. Petrol. 1988. V. 29. № 2. P. 445–522. https://doi.org/10.1093/petrology/29.2.445
- Berman R.G. Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications // Canad. Mineral. 1991. V. 29. № 4. P. 833–855.
- Berman R.G. WinTWQ (version 2.3): A software package for performing internally-consistent thermobarometric calculations // Geol. Surv. Canada. 2007. Open File 5462 (revised). https://doi.org/10.4095/223228
- Berman R.G., Aranovich L.Y. Optimized standard state and solution properties of minerals: 1. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO–A12O3–TiO2–SiO2 // Contrib. Mineral. Petrol. 1996. V. 126. P. 1–24.
- Berman R.G., Aranovich L. Ya., Rancourt D.G., Mercier D.G. Reversed phase equilibrium constraints on the stability of Mg – Fe – Al biotite // Amer. Mineral. 2007. V. 92. № 1. P. 139–150. https://doi.org/10.2138/am.2007.2051
- Connolly J.A. Multivariable phase–diagrams – an algorithm based on generalized thermodynamics // Amer. J. Sci. 1990. V. 290. P. 666–718.
- Escuder Viruete J., Indares A., Arenas R. P-T paths derived from garnet growth zoning in an extensional setting: An example from the Tormes Gneiss Dome (Iberian Massif, Spain) // J. Petrol. 2000. V. 41. P. 1489–1515.
- Escuder Viruete J., Indares A., Arenas R. P-T path determinations in the Tormes Gneissic Dome, NW Iberian Massif, Spain // J. Metamorph. Geol. 1997. V. 15. P. 645–663.
- Eskola P.E. The problem of mantled gneiss domes // Geol. Soc. London Quart. J. 1949. V. 104. Pt. 4. P. 461–476.
- Holland T.J.B. Powel R. An internally-consistent thermodynamic dataset for phases of petrological interest // J. Metamorph. Geol. 1998. V. 16. P. 309–344.
- Holland T.J.B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids // J. Metamorph. Geol. 2011. V. 29. P. 333–383.
- Holdaway M.J. Stability of andalusite and the aluminum silicate phase diagram // Amer. J. Sci. 1971. V. 271. P. 97–131.
- Holdaway M.J. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer // Amer. Mineral. 2000. V. 85. P. 881–892.
- Hollister L.S. The reaction forming cordierite from garnet, the Khtada Lake metamorphic complex, British Columbia // Canad. Mineral. 1977. V. 15. P. 217–229.
- Konopelko D., Eklund O. Timing and geochemistry of potassic magmatism in the eastern part of the Svecofennian domen, NW Ladoga lake region, Russian Karelia // Pecambr. Res. 2003. V. 120. P. 37–53.
- Petrakakis K. Metamorphism of high‐grade gneisses from the Moldanubian zone, Austria, with particular reference to the garnets // J. Metamorph. Geol. 1986. V. 4. P. 323–344.
- Prasad S.B., Bhattacharya A.K., Raith M.M., Bhadra S. The origin of orthopyroxene/biotite + plagioclase coronas from the Bolangir anorthosite complex (India), and implications for reconstructing P-T paths // Amer. Mineral. 2005. V. 90. P. 291–303.
- Suda Y., Shin-ichi K., Madhusoodhan S-K. et al. Geochemistry of mafic metamorphic rocks in the Lutzow-Holm Complex, East Antarctica: Implications for tectonic evolution // Polar Geosci. 2006. V. 19. P. 62–88.
- Stüwe K., Oliver R.L. Geological history of Adélie Land and King George V Land, Antarctica: Evidence for a polycyclic metamorphic evolution // Precambr. Res. 1989. V. 43. P. 317–334.
- Tong L., Wilson C.J.L. Tectonothermal evolution of the ultrahigh temperature metapelites in the Rauer Group, east Antarctica // Precambr. Res. 2006. V. 149. P. 1–20.
- Van der Wal D., Vissers R.L.M. Structural petrology of the ronda peridotite, SW Spain: deformation history // J. Petrol. 1996. V. 37. P. 23–43.
- Villaseca C., Downes H., Pin C., Barbero L. Nature and composition of the lower continental crust in Central Spain and the granulite–granite linkage: inferences from granulitic xenoliths // J. Petrol. 1999. V. 40. P. 1465–1496.
- Vrána S. Perpotassic granulites from southern Bohemia. A new rock type derived from partial melting of crustal rocks under upper mantle conditions // Contrib. Mineral. Petrol. 1989. V. 103. P. 510–522.
- White R., Powell R., Johnson T. The effect of Mn on mineral stability in metapelites revisited: New a-x relations for manganese-bearing minerals // J. Metamorph. Geol. 2014. V. 32. № 8. P. 261–286.
- Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals // Amer. Mineral. 2010. V. 95. P. 185–187.
- Wu C.M. Revised empirical garnet-biotite-muscoviteplagioclase geobarometer in metapelites // J. Metamorph. Geol. 2015. V. 33. P. 167–176.
- Wu C.M., Zhang J., Ren L.D. Empirical garnet-biotiteplagioclase-quartz (GBPQ) geobarometry in medium to high-grade metapelites // J. Petrol. 2006. V. 45. № 9. P. 1907–1921.
- Zhao G.C., Wilde S.A., Cawood P.A., Lu L.Z. Petrology and P-T path of the Fuping mafic granulites: implications for tectonic evolution of the central zone of the North China craton // J. Metamorph. Geol. 2000. V. 18. № 4. Р. 375–391.
- Zhao G. Palaeoproterozoic assembly of the North China Craton // Geol. Magaz. 2001. V. 138. P. 87–91.
Дополнительные файлы
