On the conditions of the formation of cancrisilite Na7(Al5Si7O24)(CO3) · 3H2O and «hydroxycancrinite» Na6(Al6Si6O24) · 4H2O (on the basis of data on synthesis)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aluminosilicates with a cancrinite-type structure compositionally related to cancrisilite and a Ca-free and CO3 — deficient cancrinite analogue were synthesized and characterized by electron microprobe and HCN-analyses, IR spectroscopy, and powder X-ray diffraction. The empirical formulae of the compounds obtained are H0.05Na6.13[Al4.36Si7.64O24](CO3)0.91 · 2.85H2O and H0.07Na6.19[Al5.53Si6.47O24]· ·(CO3)0.365 · 3.915H2O, respectively. The latter compound is characterized by disordered chains (···Na···H2O) in the narrow channel and a high content of H2O in the wide channel. The conditions for the formation of cancrisilite and carbonate-deficient cancrinite varieties in nature are discussed. It was concluded that supercritical conditions and ultra-agpitic environment contribute to crystallization of cancrisilite.

Full Text

Restricted Access

About the authors

Nikita Vladimirovich Chukanov

Institute of Problem of Chemical Physics of the RAS;Moscow State University

Author for correspondence.
Email: nikchukanov@yandex.ru

Doctor of physics and mathematics, chief researcher of the laboratory of kinetics of thermal conversions

Russian Federation, Chernogolovka, Moscow Region;Moscow

Aleksey Redovich Kotel'nikov

D.S. Korzhinskii Institute of Experimental Mineralogy of RAS

Email: kotelnik@iem.ac.ru
Russian Federation, Chernogolovka, Moscow Region

Igor Viktorovich Pekov

Moscow State University

Email: igorpekov@mail.ru
Russian Federation, Moscow

Konstantin Vladimirovich Van

D.S. Korzhinskii Institute of Experimental Mineralogy of RAS

Email: kvv@iem.ac.ru
Russian Federation, Chernogolovka, Moscow Region

References

  1. Barrer R. M., Cole J. F., Villiger H. Chemistry of soil minerals. Part VII. Synthesis, properties, and crystal structures of salt-filled cancrinites. J. Chem. Soc. A: Inorganic, Physical, Theoretical. 1970. Iss. 0. P. 1523-1531.
  2. Bonaccorsi E., Merlino S. Modular microporous minerals: Cancrinite-Davyne group and C-S-H phases. Revs. Mineral. Geochem. 2005. Vol. 57. P. 241-290.
  3. Chukanov N. V., Dubovitsky V. A., Vozchikova S. A., Orlova S. M. Discrete and functional-geometric methods of infrared spectroscopy of minerals using reference samples. Zapiski RMO (Proc. Russian Miner. Soc.). 2008. No. 1. P. 77-93 (in Russian, English translation: Geol. Ore Deposits. 2008. Vol. 50. No. 8. P. 815-826).
  4. Chukanov N. V., Pekov I. V., Olysych L. V., Massa W., Zadov A. E., Rastsvetaeva R. K., Vigasina M. F. Kyanoxalite, a new cancrinite-group mineral species with extraframework oxalate anion from the Lovozero alkaline pluton, Kola peninsula. Zapiski RMO (Proc. Russian Miner. Soc.). 2009. No. 6. P. 18-35 (in Russian, English translation: Geol. Ore Deposits. 2010. Vol. 52. No. 8. P. 778-790).
  5. Chukanov N. V., Pekov I. V., Olysych L. V., Zubkova N. V., Vigasina M. F. Crystal chemistry of cancrinite-group minerals with AB-type frameworks. II. IR spectroscopy and its crystal chemical implications: review and new data. Canad. Miner. 2011. Vol. 49. No. 5. P. 1151-1164.
  6. Chukanov N. V. Infrared spectra of mineral species: Extended library. Dordrecht; Heidelberg; New York; London: Springer-Verlag GmbH, 2014. 1716 p.
  7. Dubovitskiy V. A., Chukanov N. V. A functional-geometric method of the analysis of minerals by means of IR spectroscopy. In: Abs. Int. Symp. «Minerale der Sodalith- und Cancrinit-Gruppen sowie verwandte synthetische Verbindungen: Strukturelle Komplexitaet und Variabilitaet, sowie ihre Beziehung zum Eifelvulkanismus». Kiel: Kiel University, 2009. P. 5-6.
  8. Khomyakov A. P., Semenov E. I., Pobedimskaya E. A., Nadezhina T. N., Rastsvetaeva R. K. Cancrisilite Na7[Al5Si7O24]CO3 · 3H2O, a new cancrinite-group mineral. Zapiski RMO. (Proc. Russian Miner. Soc.). 1991. No. 6. P. 80-84 (in Russian).
  9. Olysych L. V. Structural and genetic mineralogy of the cancrinite group in intrusive alkaline complexes. Ph. D. thesis. Moscow: Moscow State University, 2010. 307 p. (in Russian).
  10. Pekov I. V., Olysych L. V., Zubkova N. V., Chukanov N. V., Van K. V., Pushcharovsky D. I. Depmeierite Na8[Al6Si6O24](PO4,CO3)1-x · 3H2O (x < 0.5): A new cancrinite-group mineral species from the Lovozero alkaline pluton of the Kola Peninsula. Zapiski RMO (Proc. Russian Miner. Soc.). 2010. No. 4. P. 63-74 (in Russian, English translation: Geol. Ore Deposits. 2011. Vol. 53. No. 7. P. 604-613).
  11. Pekov I. V., Olysych L. V., Chukanov N. V., Zubkova N. V., Pushcharovsky D. Yu., Van K. V., Giester G., Tillmanns E. Crystal chemistry of cancrinite-group minerals with AB-type frameworks. I. Chemical and structural variations: review and new data. Canad. Miner. 2011. Vol. 49. No. 5. P. 1129-1150.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Sample 6287. Polished section. BSE image. Light grains are Ti oxide.

Download (83KB)
3. Fig. 2. Sample 5832. BSE image.

Download (72KB)
4. Fig. 3. IR spectra of the samples 5832 (1) and 6297 (2).

Download (47KB)
5. Fig. 4. IR spectra of a high-silicon cancrisilite variety Na6.93(Al4.34Si7.66O24)(CO3)1.29·nH2O from the Mont Saint-Hilaire ultra-agpaite massif, Canada (1), a typical cancrinite Na5.85Ca1.4K0.05(Si6.1Al5.9O24)(CO3)1.4·nH2O from an alkaline pegmatite of the Kovdor massif, Kola Peninsula (2) and a member of the cancrinite-„hydrocancrinite” series Na7.65K0.05Ca0.04(Al5.71Si6.28Fe0.01O24)(CO3)0.95(SO4)0.07Cl0.02·2.6H2O (space group P3) from an alkaline pegmatite of the Kovdor massif (3) (the spectra are drawn using data from Chukanov, 2014).

Download (56KB)
6. Fig. 5. Wavenumbers of absorption maxima of the bands νI and νIII in IR spectra of cancrinite (1), H2O-poor cancrinite (2), cancrisilite (3), kyanoxalite and C2O4-rich members of the cancrinite-kyanoxalite series (4), CO3-deficient cancrinite analogue (5), depmeierite (6), vishnevite (7), pitiglianoite (8), balliranoite and CO3-rich members of the davyne-balliranoite series (9), davyne (10), quadridavyne (11), as well as the samples 6287 (12) and 5832 (13).

Download (41KB)

Copyright (c) 2019 Russian academy of sciences