Defect and admixture composition of diamond crystals with growth pyramids <100> from placers of the Krasnovishersky district, the Urals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The internal structure of cuboid diamonds from contemporary alluvial placers of the Krasnovishersky district at the Urals was investigated with analyzing their spectroscopic characteristics. Crystals were divided into four groups by their anatomy and spectroscopic features: cuboids of the II variety in the Yu. L. Orlov classification; cuboids with transparent core and outer part saturated with inclusions; crystals with simultaneous growth of <100> and <111> pyramids, and crystals with their consecutive growth. The local photoluminescence investigations have been carried out for all different growth zones and pyramids. There was revealed localization of luminescence bands 926 and 933 nm to growth pyramids <100> and <111>. In all studied crystals, the last stage of growth was the regenerative formation of {111} face steps together with square pits forming on the surface. Some cuboids with C centres have specific luminescence systems, such as 575, 635.1, 636.8 nm, broad band with maximum at 700 nm, and intense lines at 800, 820.5, 840, 860, 869 nm. Different thermal history of mixed-habit diamonds was shown. It is noted that the cuboid diamonds from different regions of the world have the similar internal structure and spectroscopic features.

Full Text

Restricted Access

About the authors

Igor V. Klepikov

A.P. Karpinsky Russian Geological Research Institute

Author for correspondence.
Email: Klepikov_Igor@mail.ru
SPIN-code: 2836-6724
Scopus Author ID: 57200302816

Phd student

Russian Federation, 199106, Saint-Petersburg, Sredniy prospect, 74 

Eugene A. Vasilev

Saint-Petersburg Mining University

Email: Simphy12@mail.ru

Leading engineer

Russian Federation, 2 21st line, Saint-Petersburg, 199106

Anton V. Antonov

A.P. Karpinsky Russian Geological Research Institute

Email: Anton_Antonov@vsegei.ru

Science worker, Isotopic research centre 

199106, Saint-Petersburg, Sredniy prospect, 74 

References

  1. Beskrovanov V. V. Ontogeny of diamonds. Novosibirsk: Nauka, 2000. 165 p. (in Russian).
  2. Collins A. T., Mohammed K. Optical studies of vibronic bands in yellow luminescing natural diamonds. J. Phys. C: Solid State Phys. 1982. No. 15. P. 147-158.
  3. Goss J. P., Briddon P. R., Hill V., Jones R., Rayson M. Identification of the structure of the 3107 cm–1 H-related defect in diamond. J. Phys. Condens. Matter. 2014. Vol. 26. P. 1-6.
  4. Gurney J. J., Hildebrand P. R., Carlson J. A., Fedortchouk Y., Dyck D. R. The morphological characteristics of diamonds from the Ekati property, Northwest Territories, Canada. Lithos. 77. 2004. P. 21-38.
  5. Howell D., O’Neill C. J., Grant K. J., Griffin W. L., Pearson N. J., O’Reilly S. Y. μ-FTIR mapping: Distribution of impurities in different types of diamond growth. Diam. Relat. Mater. 2012. No. 29. P. 29-36.
  6. Khachatryan G. K. Nitrogen and hydrogen centers in diamond, their genetic informational content and significance for solving forecasting and search tasks. Ores and Metals. 2009. No. 4. P. 73-80 (in Russian)
  7. Kriulina G. Y., Garanin V. K., Vasilyev E. A., Kyazimov V. O., Matveeva O. P., Ivannikov P. V. New Data on the structure of diamond crystals of cubic habitus from the Lomonosov Deposit. Moscow Univ. Geol. Bull. 2012. Vol. 67. No. 5. P. 282-288.
  8. Kriulina G. Y., Vasilev E. A., Garanin V. K. Structural and mineralogical features of diamond from M. V. Lomonosov deposit (Arkhangelsk Province): new data and their interpretation. Doklady Earth Sci. 2019. Vol. 486. P. 627-629.
  9. Kukharenko A. A. The Ural diamonds. Moscow: Gosgeoltehizdat. 1955. 516 p. (in Russian).
  10. Lang A. R. Space-filling by branching columnar single-crystal growth: An example from crystallisation of diamond. J. Cryst. Growth. 1974. Vol. 23. P. 151-153.
  11. Nefedov Y. V., Klepikov I. V. Occurrence regularities of nitrogen defects in the ural type crystal diamonds from different regions. Key Engineering Materials. 2018. Vol. 769. P. 201-206.
  12. Orlov Yu. L. Mineralogy of diamond. Moscow: Nauka, 1973. 221 p. (in Russian).
  13. Ragozin A., Zedgenizov D., Kuper K., Kalinina V., Zemnukhov A. The internal structure of yellow cuboid diamonds from alluvial placers of the Northeastern Siberian platform. Crystals. 2017. Vol. 7. No. 8. P. 238.
  14. Shafranovsky G. I. New data on morphology of diamonds from Krasnovishersky district. In: Diamonds and diamond content of the Timan-Ural region. Conf. Proc. Syktyvkar: Geoprint, 2001. P. 148-149 (in Russian).
  15. Schrauder M., Navon O. Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim. Cosmochim. Acta. 1994. Vol. 58. No. 2. P. 761-771.
  16. Smith C. B., Bulanova G. P., Kohn S. C., Milledge H. J., Hall A. E., Griffin B. J., Graham Pearson D. Nature and genesis of Kalimantan diamonds. Lithos. 112S. 2009. Vol. 112. No. 2. P. 822-832.
  17. Smit K. V., Shirey S. B., Stern R. A., Steele A., Wang W. Diamond growth from C-H-N-O fluids in the lithosphere: evidence from CH4 micro-inclusions and 13C-15N-N content in Zimbabwe mixed-habit diamonds. Lithos. 2016. Vol. 265. P. 68-81.
  18. Smit K. V., D’Haenens-Johansson U. F. S., Howell D., Loudin L. C., Wang W. Deformation-related spectroscopic features in natural Type Ib-IaA diamonds from Zimmi (West African craton). Miner. Petrol. 2018. Vol. 112. P. 243-257.
  19. Sunagawa I. Growth and morphology of diamond crystals under stable and metastable conditions. J. Cryst. Growth. 1990. Vol. 99. P. 1156-1161.
  20. Titkov S. V., Shiryaev A. A., Zudina N. N., Zudin N. G., Solodova Yu. P. Defects in cubic diamonds from placers of the northeast of the Siberian platform according to IR microspectroscopy. Russian Geol. Geophys. 2015. Vol. 56. No. 1-2. P. 455-466 (in Russian).
  21. Vasilev E. A., Kozlov A. V., Nefedov Yu. V., Petrovsky V. A. Comparative analysis of diamonds from Anabar, Brazil and the Urals by FTIR. Proc. Mining University. 2013. Vol. 200. P. 167-171 (in Russian).
  22. Vasilev E. A., Klepikov I. V., Lukianova L. I. Comparison of diamonds from Rassolninskaya depression and modern alluvial placers of Krasnovishersky district. Zapiski RMO (Proc. Russian Miner. Soc.). 2018а. No. 1. P. 55-68 (in Russian).
  23. Vasilev E. A., Klepikov I. V., Antonov A. V. Mixed growth rounded diamonds from modern alluvial placers of Krasnovishersky district, the Urals. Zapiski RMO (Proc. Russian Miner. Soc.). 2018б. No. 4. P. 114-126 (in Russian).
  24. Zaitsev A. M. Optical Properties of Diamond: Data Handbook. Berlin: Springer, 2001. 502 p.
  25. Zedgenizov D. A., Harte B., Shatsky V. S., Politov A. A., Rylov G. M., Sobolev N. V. Directional chemical variations in diamonds showing octahedral following cuboid growth. Contrib. Miner. Petrol. 2006. Vol. 151. P. 45-57.
  26. Zedgenizov D. A., Kalinina V. V., Reutsky V. N., Yuryeva O. P., Rakhmanova M. I. Regular cuboid diamonds from placers on the northeastern Siberian platform. Lithos. 2016. Vol. 265. P. 125-137.
  27. Zudina N. N., Titkov S. V., Sergeev A. M., Zudin N. G. Features of the centers of photoluminescence in cubic diamonds with different colors from placers of the northeast Siberian platforms. Zapiski RMO (Proc. Russian Miner. Soc.). 2013. No. 4. P. 57-72 (in Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Cuboids of I group 600-66 (а—г) and 601-66 (д—з): а, д — general view of crystals; images of polished plates: б, е — photoluminescence under 365 nm excitation; в, ж — cathodoluminescence; г, з — transmitted light.

Download (67KB)
3. Fig. 2. Image of the strongly dissolved chip of the I group crystal 126-76: a — general view; б, в — BSE image of the surface with rectengular pits; г, д, е — photoluminescence under 405 nm excitation; ж, з, и — cathodoluminescence (1 — cuboid zone, 2 — octahedral zone); г, ж — polished plate, other — nature surface.

Download (111KB)
4. Fig. 3. Spectra of the diamond 126-76, recorded in different growth zones (1 — homogeneous cubic zone, 2 — octahedral zone): a — FTIR absorption; б — photoluminescence at 488 nm excitation; в — photoluminescence at 785 nm excitation, at 77 K.

Download (93KB)
5. Fig. 4. Cuboids of the second group diamonds 685-66 and 602-66: a, e — general view. Images of plates: б, ж — transmitted light; в, з — сathodoluminescence; г, и — photoluminescence under 405 nm excitation; д, и — distribution of the N3 photoluminescence intensity under 405 nm excitation, through light filters of the edge 450 nm and blue SS4.

Download (64KB)
6. Fig. 5. III group diamonds with simultaneous growth of pyramids <100> and <111>; general view: a — 123-76, б — 29-76, в — 615-66. Plates: г, д, е — cathodoluminescence; ж, з, и — photoluminescence under excitation 365 nm (и) and 405 nm (ж, з) through the edge light filter 450 nm. In frame — the fragment with spots of the locally decreased CL intensity, containing rosette-shaped inclusions in their centers.

Download (120KB)
7. Fig. 6. FTIR absorption spectra of crystals with simultaneous growth of pyramids <100> and <111>: 1 — 123-76; 2 — 29-76; 3 — 615-66.

Download (41KB)
8. Fig. 7. IV group crystals with the consequent change of their growth mechanism. General view: а — 122-76, г — 612-66. Plates: б, д — cathodoluminescence; в, е — photoluminescence under excitation 405 nm through the edge light filter 450 nm..

Download (70KB)

Copyright (c) 2019 Russian academy of sciences