Deltalumite, a new natural modification of alumina with spinel-type structure
- Authors: Pekov I.V.1, Anikin L.P.2, Chukanov N.V.3, Belakovskiy D.I.4, Yapaskurt V.O.1, Sidorov E.G.2, Britvin S.N.5, Zubkova N.V.1
-
Affiliations:
- Moscow State University
- Institute of Volcanology and Seismology, Far Eastern Division RAS
- Institute of Problem of Chemical Physics of the Russian Academy of Science
- Mineralogical Museum of the Russian Academy of Sciences
- Saint-Petersburg State University
- Issue: Vol 148, No 5 (2019)
- Pages: 45-58
- Section: NEW MINERALS
- URL: https://journals.eco-vector.com/0869-6055/article/view/12737
- DOI: https://doi.org/10.30695/zrmo/2019.1485.02
- ID: 12737
Cite item
Abstract
The new mineral deltalumite, an analogue of the spinel-type synthetic δ-Al2O3, the second, after corundum α-Al2O3, natural modification of alumina, was found in products of two eruptions of the Ploskiy Tolbachik Volcano (Kamchatka, Russia). It occurs in pores of basalt lava and basalt scoria altered by fumarolic gas. The mineral forms roundish aggregations up to 0.2 mm across which consist of blocky, coarse prismatic individuals up to 0.03 mm in size. Deltalumite is pale yellowish, pale beige or white, translucent, with vitreous lustre. The mineral is brittle. Dcalc = 3.663 g cm–3. Deltalumite is optically uniaxial (–), ω = 1.654(2), ε = 1.653(2) (λ = 589 nm). Chemical composition (electron microprobe) is: Al2O3 99.74, SiO2 0.04, total 99.78 wt %. The strongest reflections of powder X-ray diffraction pattern [d,Å(I)(hkl)] are: 2.728(61)(202), 2.424(51)(212), 2.408(49)(213), 2.281(42)(206), 1.993(81)(1.0.11, 220, 221), 1.954(48)(0.0.12) and 1.396(100)(327, 400, 2.1.14). The mineral is tetragonal, space group P-4m2 (by analogy with synthetic δ-Al2O3), unit-cell dimensions are: a = 5.608(1), c = 23.513(7) Å, V = 739.4(4) Å3 and Z = 16. Deltalumite belongs to the spinel subgroup within the oxyspinel group, its structural formula can be written as (Al0.67□0.33)Al2O4 in which □ means vacancy. The new mineral can be clearly distinguished from other modifications of alumina using powder X-ray diffraction pattern or IR spectrum.
Full Text

About the authors
Igor Viktorovich Pekov
Moscow State University
Author for correspondence.
Email: igorpekov@mail.ru
Faculty of Geology
Russian Federation, MoscowLeonid Pavlovich Anikin
Institute of Volcanology and Seismology, Far Eastern Division RAS
Email: alp@kscnet.ru
вед. инженер
Russian Federation, Petropavlovsk-KamchatskyNikita Vladimirovich Chukanov
Institute of Problem of Chemical Physics of the Russian Academy of Science
Email: chukanov@icp.ac.ru
зав. лаб.
Russian Federation, ChernogolovkaDmitry Il'ich Belakovskiy
Mineralogical Museum of the Russian Academy of Sciences
Email: dmzvr@mail.ru
зав. сектором
Russian Federation, MoscowVasiliy Olegovich Yapaskurt
Moscow State University
Email: yvo72@geol.msu.ru
вед. н. с., Геологический факультет
Russian Federation, MoscowEvgeny Gennadievich Sidorov
Institute of Volcanology and Seismology, Far Eastern Division RAS
Email: mineral@kscnet.ru
зав. лаб.
Russian Federation, Petropavlovsk-KamchatskySergey Nikolaevich Britvin
Saint-Petersburg State University
Email: sbritvin@gmail.com
профессор, кафедра кристаллографии
Russian Federation, Saint-PetersburgNatalia Vital'evna Zubkova
Moscow State University
Email: n.v.zubkova@gmail.com
доцент, Геологический факультет
Russian Federation, MoscowReferences
- Anthony J. W., Bideaux R. A., Bladh K. W., Nichols M. C. Handbook of Mineralogy. III. Halides, Hydroxides, Oxides. Tucson: Mineral Data Publishing, 1997. 628 p.
- Bosi F., Biagioni C., Pasero M. Nomenclature and classification of the spinel supergroup. Eur. J. Miner. 2019. Vol. 31. No. 1. P. 183-192.
- Britvin S. N., Dolivo-Dobrovolsky D. V., Krzhizhanovskaya M. G. Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski RMO (Proc. Russian Miner. Soc.). 2017. Vol. 146. No. 3. P. 104-107 (in Russian).
- Dan’ko A. J., Rom M. A., Sidelnikova N. S., Nizhankovskiy S. V., Budnikov A. T., Grin’ Yu., Kaltaev K. S. Transformation of the corundum structure upon high-temperature reduction. Cryst. Rep. 2008. Vol. 53. No. 7. P. 1112-1118.
- Guse W., Saalfeld H. X-ray characterization and structure refinement of a new cubic alumina phase (sigma-Al2O3) with spinel-type structure. N. Jb. Miner. Mh. 1990. H. 5. P. 217-226.
- Gutierrez G., Taga A., Johansson B. Theoretical structure determination of gamma-(Al2O3). Phys. Rev. B. 2002. Vol. 65. Pt. 1. 012101/1-012101/4.
- Husson E., Repelin Y. Structural studies of transition aluminas. Theta alumina. Eur. J. Solid State Inorg. Chem. 1996. Vol. 33. P. 1223-1231.
- Ito T., Yoshiasa A., Yamanaka T., Nakatsuka A., Maekawa H. Site preference of cations and structural variation in MgAl2-xGaxO4 (0 < x < 2) spinel solid solution. Zeit. Anorg. Allgem. Chemie. 2000. Vol. 626. P. 42-49.
- Levin I., Brandon D. Metastable alumina polymorphs: crystal structures and transition sequences. J. Amer. Ceramic Soc. 1998. Vol. 81. P. 1995-2012.
- Li D.-L., O’Connor B. H., Roach G. I. D., Cornell J. B. Structural models of eta- and gamma-aluminas by X-ray Rietveld refinement. Acta Cryst. A. 1990. Vol. 46, C61.
- Minerals. Reference Book. Vol. II, issue 2. Simple Oxides. Moscow: Nauka, 1965. 342 p. (in Russian).
- Mozgawa W., Król M., Barczyk K. FT-IR studies of zeolites from different structural groups. CHEMIK. 2011. Vol. 65. No. 7. P. 667-674.
- Mutschke H., Min M., Tamanai A. Laboratory-based grain-shape models for simulating dust infrared spectra. Astronomy & Astrophysics manuscript no. 12267. 2013. P. 1-8.
- Newnham R. E., de Haan Y. M. Refinement of the Al2O3 - alpha, Ti2O3, V2O3 and Cr2O3 structures. Z. Krist. 1962. Vol. 117. P. 235-237.
- Paglia G., Buckley C. E., Rohl A. L., Hunter B. A., Hart R. D., Hanna J. V., Byrne L. T. Tetragonal structure model for boehmite-derived gamma-alumina. Phys. Rev. B. 2003. Vol. 68. 144110/1-144110/11.
- Pekov I. V., Zubkova N. V., Yapaskurt V. O., Belakovskiy D. I., Lykova I. S., Vigasina M. F., Sidorov E. G., Pushcharovsky D. Yu. New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6. Miner. Mag. 2014. Vol. 78. P. 905-917.
- Pekov I. V., Anikin L. P., Chukanov N. V., Belakovskiy D. I., Yapaskurt V. O., Sidorov, E. G., Britvin S. N., Zubkova N. V. Deltalumite, IMA 2016-027. CNMNC Newsletter No. 32, August 2016, page 919. Miner. Mag. 2016. Vol. 80. P. 915-922.
- Pekov I. V., Sandalov F. D., Koshlyakova N. N., Vigasina M. F., Polekhovsky Y. S., Britvin S. N., Sidorov E. G., Turchkova A. G. Copper in natural oxide spinels: the new mineral thermaerogenite CuAl2O4, cuprospinel and Cu-enriched varieties of other spinel-group members from fumaroles of the Tolbachik volcano, Kamchatka, Russia. Minerals. 2018. Vol. 8(11). Paper 498.
- Repelin Y., Husson E. Etudes structurales d’alumines de transition. I - Alumines gamma et delta. Mater. Res. Bull. 1990. Vol. 25. P. 611-621.
- Saniger J. M. Al-O infrared vibrational frequencies of γ-alumina. Mater. Letters. 1995. Vol. 22. No. 1. P. 109-113.
- Shirasuka K., Yanagida H., Yamaguchi G. The preparation of eta alumina and its structure. Yogyo Kyokai Shi (J. Ceramic Assoc. of Japan). 1976. Vol. 84. P. 610-613.
- Siegert Ch., Shirokov A. L., Nikishova L. V., Pavlova L. A., Babiy O. A. Natural analogues of the alumina modifications (δ-Al2O3 and θ-Al2O3) in permafrost-area sediments. Doklady USSR Acad. Sci. 1990. Vol. 313. P. 689-692 (in Russian).
- Singh B., Gilkes R. J. The natural occurrence of χ-alumina in lateritic pisolites. Clay Minerals. 1995. Vol. 30. P. 39-44.
- Smrčok L., Langer V., Křesťan J. γ-Alumina: a single-crystal X-ray diffraction study. Acta Cryst. C. 2006. Vol. 62. No. 9. P. i83-i84.
- Symonds R. B., Reed M. H. Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens. Amer. J. Sci. 1993. Vol. 293. P. 758-864.
- Tamura S., Kim Y.-W., Masui T., Imanaka M. Electrochemical growth of nanometer-sized δ-Al2O3 single crystals by use of Al3+ conducting solid electrolyte. Solid State Ionics. 2004. Vol. 173. P. 131-134.
- The Great Tolbachik Fissure Eruption (eds S. A. Fedotov and Y. K. Markhinin). New York: Cambridge University Press, 1983. 341 p.
- Tilley D. B., Eggleton R. A. The natural occurrence of eta-alumina (η-Al2O3) in bauxite. Clays and Clay Minerals. 1996. Vol. 44. P. 658-664.
- Tolbachik Fissure Eruption of 2012-2013 (TFE-50) (eds E. I. Gordeev and N. L. Dobretsov). SO RAN Publishing, Novosibirsk, 2017. 421 p. (in Russian)
- Wefers K., Misra C. Oxides and Hydroxides of Aluminum. Alcoa Technical Paper No. 19. Alcoa Laboratories, Pittsburgh, PA, 1987. 92 pp.
- Wilson S. J., McConnell J. D. C. A kinetic study of the system γ-AlOOH/Al2O3. J. Solid State Chem. 1980. Vol. 34. P. 315-322.
- Wolverton C., Hass K. C. Phase stability and structure of spinel-based transition aluminas. Phys. Rev. B. 2000. Vol. 63, 024102/1-024102/16.
- Xu W., Peacor D. R., Dollase W. A., Van Der Voo R., Beaubeuf R. Transformation of titanomagnetite to titanomaghemite: A slow, two-step, oxidation-ordering process in MORB. Amer. Miner. 1997. Vol. 82. P. 1101-1110.
- Zhou R.-S., Snyder R. L. Structures and transformation mechanisms of the eta, gamma and theta transition aluminas. Acta Cryst. B. 1991. Vol. 47. P. 617-630.
Supplementary files
