Deltalumite, a new natural modification of alumina with spinel-type structure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The new mineral deltalumite, an analogue of the spinel-type synthetic δ-Al2O3, the second, after corundum α-Al2O3, natural modification of alumina, was found in products of two eruptions of the Ploskiy Tolbachik Volcano (Kamchatka, Russia). It occurs in pores of basalt lava and basalt scoria altered by fumarolic gas. The mineral forms roundish aggregations up to 0.2 mm across which consist of blocky, coarse prismatic individuals up to 0.03 mm in size. Deltalumite is pale yellowish, pale beige or white, translucent, with vitreous lustre. The mineral is brittle. Dcalc = 3.663 g cm–3. Deltalumite is optically uniaxial (–), ω = 1.654(2), ε = 1.653(2) (λ = 589 nm). Chemical composition (electron microprobe) is: Al2O3 99.74, SiO2 0.04, total 99.78 wt %. The strongest reflections of powder X-ray diffraction pattern [d,Å(I)(hkl)] are: 2.728(61)(202), 2.424(51)(212), 2.408(49)(213), 2.281(42)(206), 1.993(81)(1.0.11, 220, 221), 1.954(48)(0.0.12) and 1.396(100)(327, 400, 2.1.14). The mineral is tetragonal, space group P-4m2 (by analogy with synthetic δ-Al2O3), unit-cell dimensions are: a = 5.608(1), c = 23.513(7) Å, V = 739.4(4) Å3 and Z = 16. Deltalumite belongs to the spinel subgroup within the oxyspinel group, its structural formula can be written as (Al0.670.33)Al2O4 in which □ means vacancy. The new mineral can be clearly distinguished from other modifications of alumina using powder X-ray diffraction pattern or IR spectrum.

Full Text

Restricted Access

About the authors

Igor Viktorovich Pekov

Moscow State University

Author for correspondence.
Email: igorpekov@mail.ru

Faculty of Geology

Russian Federation, Moscow

Leonid Pavlovich Anikin

Institute of Volcanology and Seismology, Far Eastern Division RAS

Email: alp@kscnet.ru

вед. инженер

Russian Federation, Petropavlovsk-Kamchatsky

Nikita Vladimirovich Chukanov

Institute of Problem of Chemical Physics of the Russian Academy of Science

Email: chukanov@icp.ac.ru

зав. лаб.

Russian Federation, Chernogolovka

Dmitry Il'ich Belakovskiy

Mineralogical Museum of the Russian Academy of Sciences

Email: dmzvr@mail.ru

зав. сектором

Russian Federation, Moscow

Vasiliy Olegovich Yapaskurt

Moscow State University

Email: yvo72@geol.msu.ru

вед. н. с., Геологический факультет

Russian Federation, Moscow

Evgeny Gennadievich Sidorov

Institute of Volcanology and Seismology, Far Eastern Division RAS

Email: mineral@kscnet.ru

зав. лаб.

Russian Federation, Petropavlovsk-Kamchatsky

Sergey Nikolaevich Britvin

Saint-Petersburg State University

Email: sbritvin@gmail.com

профессор, кафедра кристаллографии

Russian Federation, Saint-Petersburg

Natalia Vital'evna Zubkova

Moscow State University

Email: n.v.zubkova@gmail.com

доцент, Геологический факультет

Russian Federation, Moscow

References

  1. Anthony J. W., Bideaux R. A., Bladh K. W., Nichols M. C. Handbook of Mineralogy. III. Halides, Hydroxides, Oxides. Tucson: Mineral Data Publishing, 1997. 628 p.
  2. Bosi F., Biagioni C., Pasero M. Nomenclature and classification of the spinel supergroup. Eur. J. Miner. 2019. Vol. 31. No. 1. P. 183-192.
  3. Britvin S. N., Dolivo-Dobrovolsky D. V., Krzhizhanovskaya M. G. Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski RMO (Proc. Russian Miner. Soc.). 2017. Vol. 146. No. 3. P. 104-107 (in Russian).
  4. Dan’ko A. J., Rom M. A., Sidelnikova N. S., Nizhankovskiy S. V., Budnikov A. T., Grin’ Yu., Kaltaev K. S. Transformation of the corundum structure upon high-temperature reduction. Cryst. Rep. 2008. Vol. 53. No. 7. P. 1112-1118.
  5. Guse W., Saalfeld H. X-ray characterization and structure refinement of a new cubic alumina phase (sigma-Al2O3) with spinel-type structure. N. Jb. Miner. Mh. 1990. H. 5. P. 217-226.
  6. Gutierrez G., Taga A., Johansson B. Theoretical structure determination of gamma-(Al2O3). Phys. Rev. B. 2002. Vol. 65. Pt. 1. 012101/1-012101/4.
  7. Husson E., Repelin Y. Structural studies of transition aluminas. Theta alumina. Eur. J. Solid State Inorg. Chem. 1996. Vol. 33. P. 1223-1231.
  8. Ito T., Yoshiasa A., Yamanaka T., Nakatsuka A., Maekawa H. Site preference of cations and structural variation in MgAl2-xGaxO4 (0 < x < 2) spinel solid solution. Zeit. Anorg. Allgem. Chemie. 2000. Vol. 626. P. 42-49.
  9. Levin I., Brandon D. Metastable alumina polymorphs: crystal structures and transition sequences. J. Amer. Ceramic Soc. 1998. Vol. 81. P. 1995-2012.
  10. Li D.-L., O’Connor B. H., Roach G. I. D., Cornell J. B. Structural models of eta- and gamma-aluminas by X-ray Rietveld refinement. Acta Cryst. A. 1990. Vol. 46, C61.
  11. Minerals. Reference Book. Vol. II, issue 2. Simple Oxides. Moscow: Nauka, 1965. 342 p. (in Russian).
  12. Mozgawa W., Król M., Barczyk K. FT-IR studies of zeolites from different structural groups. CHEMIK. 2011. Vol. 65. No. 7. P. 667-674.
  13. Mutschke H., Min M., Tamanai A. Laboratory-based grain-shape models for simulating dust infrared spectra. Astronomy & Astrophysics manuscript no. 12267. 2013. P. 1-8.
  14. Newnham R. E., de Haan Y. M. Refinement of the Al2O3 - alpha, Ti2O3, V2O3 and Cr2O3 structures. Z. Krist. 1962. Vol. 117. P. 235-237.
  15. Paglia G., Buckley C. E., Rohl A. L., Hunter B. A., Hart R. D., Hanna J. V., Byrne L. T. Tetragonal structure model for boehmite-derived gamma-alumina. Phys. Rev. B. 2003. Vol. 68. 144110/1-144110/11.
  16. Pekov I. V., Zubkova N. V., Yapaskurt V. O., Belakovskiy D. I., Lykova I. S., Vigasina M. F., Sidorov E. G., Pushcharovsky D. Yu. New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6. Miner. Mag. 2014. Vol. 78. P. 905-917.
  17. Pekov I. V., Anikin L. P., Chukanov N. V., Belakovskiy D. I., Yapaskurt V. O., Sidorov, E. G., Britvin S. N., Zubkova N. V. Deltalumite, IMA 2016-027. CNMNC Newsletter No. 32, August 2016, page 919. Miner. Mag. 2016. Vol. 80. P. 915-922.
  18. Pekov I. V., Sandalov F. D., Koshlyakova N. N., Vigasina M. F., Polekhovsky Y. S., Britvin S. N., Sidorov E. G., Turchkova A. G. Copper in natural oxide spinels: the new mineral thermaerogenite CuAl2O4, cuprospinel and Cu-enriched varieties of other spinel-group members from fumaroles of the Tolbachik volcano, Kamchatka, Russia. Minerals. 2018. Vol. 8(11). Paper 498.
  19. Repelin Y., Husson E. Etudes structurales d’alumines de transition. I - Alumines gamma et delta. Mater. Res. Bull. 1990. Vol. 25. P. 611-621.
  20. Saniger J. M. Al-O infrared vibrational frequencies of γ-alumina. Mater. Letters. 1995. Vol. 22. No. 1. P. 109-113.
  21. Shirasuka K., Yanagida H., Yamaguchi G. The preparation of eta alumina and its structure. Yogyo Kyokai Shi (J. Ceramic Assoc. of Japan). 1976. Vol. 84. P. 610-613.
  22. Siegert Ch., Shirokov A. L., Nikishova L. V., Pavlova L. A., Babiy O. A. Natural analogues of the alumina modifications (δ-Al2O3 and θ-Al2O3) in permafrost-area sediments. Doklady USSR Acad. Sci. 1990. Vol. 313. P. 689-692 (in Russian).
  23. Singh B., Gilkes R. J. The natural occurrence of χ-alumina in lateritic pisolites. Clay Minerals. 1995. Vol. 30. P. 39-44.
  24. Smrčok L., Langer V., Křesťan J. γ-Alumina: a single-crystal X-ray diffraction study. Acta Cryst. C. 2006. Vol. 62. No. 9. P. i83-i84.
  25. Symonds R. B., Reed M. H. Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens. Amer. J. Sci. 1993. Vol. 293. P. 758-864.
  26. Tamura S., Kim Y.-W., Masui T., Imanaka M. Electrochemical growth of nanometer-sized δ-Al2O3 single crystals by use of Al3+ conducting solid electrolyte. Solid State Ionics. 2004. Vol. 173. P. 131-134.
  27. The Great Tolbachik Fissure Eruption (eds S. A. Fedotov and Y. K. Markhinin). New York: Cambridge University Press, 1983. 341 p.
  28. Tilley D. B., Eggleton R. A. The natural occurrence of eta-alumina (η-Al2O3) in bauxite. Clays and Clay Minerals. 1996. Vol. 44. P. 658-664.
  29. Tolbachik Fissure Eruption of 2012-2013 (TFE-50) (eds E. I. Gordeev and N. L. Dobretsov). SO RAN Publishing, Novosibirsk, 2017. 421 p. (in Russian)
  30. Wefers K., Misra C. Oxides and Hydroxides of Aluminum. Alcoa Technical Paper No. 19. Alcoa Laboratories, Pittsburgh, PA, 1987. 92 pp.
  31. Wilson S. J., McConnell J. D. C. A kinetic study of the system γ-AlOOH/Al2O3. J. Solid State Chem. 1980. Vol. 34. P. 315-322.
  32. Wolverton C., Hass K. C. Phase stability and structure of spinel-based transition aluminas. Phys. Rev. B. 2000. Vol. 63, 024102/1-024102/16.
  33. Xu W., Peacor D. R., Dollase W. A., Van Der Voo R., Beaubeuf R. Transformation of titanomagnetite to titanomaghemite: A slow, two-step, oxidation-ordering process in MORB. Amer. Miner. 1997. Vol. 82. P. 1101-1110.
  34. Zhou R.-S., Snyder R. L. Structures and transformation mechanisms of the eta, gamma and theta transition aluminas. Acta Cryst. B. 1991. Vol. 47. P. 617-630.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Typical morphology of deltalumite. SEM (SE) images.

Download (56KB)
3. Fig. 2. Powder IR absorption spectra of (а) deltalumite, (б) synthetic γ-Al2O3 (Saniger, 1995) and (в) synthetic analogue of corundum (Mutschke et al., 2013).

Download (52KB)
4. Fig. 3. Crystal structures (drawn based on literature data) of different spinel-type modifications of alumina (а—д): а and б — δ-Al2O3 in two projections (Repelin, Husson, 1990); в — tetragonal γ-Al2O3 (Li et al., 1990); г — cubic γ-Al2O3 (Gutierrez et al., 2002); д — θ-Al2O3 (Husson, Repelin, 1996). The structures of maghemite Fe2O3 (е: Xu et al., 1997), spinel MgAl2O4 (ж: Ito et al., 2000) and corundum (з: Newnham, de Haan, 1962) are shown for comparison. Grey circles are Al atoms (in е: Fe atoms), black circles are O atoms. The unit cells are outlined.

Download (250KB)

Copyright (c) 2019 Russian academy of sciences