Aluminum-rich chlorine-bearing tourmaline from the Terlig-Khaya mercury deposit, Republic of Tuva

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Tourmalines of quartz-tourmaline altered rock (tourmalinite) belonging to argillic assemblage at the Terlig-Khaya mercury deposit in Tuva have been studied using scanning electron microscopy, electron microprobe analysis, laser ablation — inductively coupled plasma mass spectrometry, infrared spectroscopy, and Mössbauer spectroscopy. The tourmalines studied are primarily classified as foitite and oxy-foitite; some compositions are attributed to dravite, oxy-dravite, magnesio-foitite, and oxy-schorl. They are enriched in Ca (adachiite component) and Cl. The characteristic substitutions in tourmalines are Mg ↔ Fe2+, Na + Mg ↔ X-site vacancy + Al and Na + Si ↔ Ca + Al. The content of most measured trace elements in tourmalines does not exceed a few ten ppm. The Fe3+/Fetot (18 %) determined in bulk tourmaline sample indicate weak oxidizing conditions of the tourmalinite formation. Possible source for Cl and B in hydrothermal fluids is evaporites of the Tuva through.

Texto integral

Acesso é fechado

Sobre autores

I. Baksheev

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: baksheev@geol.msu.ru

Geological Faculty

Rússia, Moscow

R. Kuzhuget

Tuva Institute of Integrated Development of Natural Resources, SB RAS

Email: baksheev@geol.msu.ru
Rússia, Kyzyl

I. Ekimenkova

Lomonosov Moscow State University

Email: baksheev@geol.msu.ru

Geological Faculty

Rússia, Moscow

V. Yapaskurt

Lomonosov Moscow State University

Email: baksheev@geol.msu.ru

Geological Faculty

Rússia, Moscow

M. Anosova

Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS

Email: baksheev@geol.msu.ru
Rússia, Moscow

V. Andrianov

Lomonosov Moscow State University

Email: baksheev@geol.msu.ru

Skobeltsyn Institute of Nuclear Physics

Rússia, Moscow

Bibliografia

  1. Akçay M., Moon C. J., Scott B. C. Fluid inclusions and chemistry of tourmalines from the Gümüþler Sb-Hg ± W Deposits of the Niðde Massif (Central Turkey). Chem. Erde. 1995. Vol. 55. P. 225—236.
  2. Baksheev I. A., Tikhomirov P. L. Yapaskurt V. O., Vigasina M. F., Prokof’ev V. Yu., Ustinov V. I. Tourmaline of the Mramorny tin cluster, Chukotka Peninsula, Russia. Canad. Miner. 2009. Vol. 47. P. 1177—1194.
  3. Baksheev I. A., Prokof’ev V. Yu., Zaraisky G. P., Chitalin A. F., Yapaskurt V. O., Nikolaev Y. N., Tikhomirov P. L., Nagornaya E. V., Rogacheva L. I., Gorelikova N. V., Kononov O. V. Tourmaline as a prospecting guide for the porphyry-style deposits. Eur. J. Miner. 2012. Vol. 24. P. 957—979.
  4. Baksheev I. A. Tourmaline from gold deposits. In: Proc. Ann. Meet. RMS “Mineralogical research for the development of mineral resources complex in Russia and creation of modern technologies”. Apatity, September 16—21, 2024. Apatity: KSC RAS, 2024. P. 262—263 (in Russian).
  5. Borisenko A. S., Lebedev V. I., Obolensky A. A., Zaikov V. V., Tyulkin V. G. Physicochemical formation conditions of hydrothermal deposits of Western Tuva. In: Basic parameters of natural processes of endogene ore formation. Novosibirsk: Nauka, 1979. Vol. 2. P. 226—235 (in Russian).
  6. Bozkaya Ö., Baksheev I. A., Hanilçi N., Bozkaya G., Prokofiev V. Y., Yücel Özta Y., Banks D. A. Tourmaline composition of the Kışladağ porphyry Au deposit, Western Turkey: implication of epithermal overprint. Minerals. 2020. Vol. 10. Paper 789.
  7. Codeço M. S., Weis P, Trumbull R. B., Pinto F., Lecumberri-Sanchez P., Wilke F. D.H.H. Chemical and boron isotopic composition of hydrothermal tourmaline from the Panasqueira W-Sn-Cu deposit, Portugal. Chem. Geol. 2017. Vol. 468. P. 1—16.
  8. Collins A. C. Mineralogy and geochemistry of tourmaline in contrasting hydrothermal systems: Copiapó area, Northern Chile. MS diss. University of Arizona, 2010.
  9. Etzel T. M., Moore J. N., Bowman J. R., Jones C. G., Intani R. G., Golla G., Nash G. Tourmaline in geothermal systems: an example from Darajat, Indonesia. GRC Trans. 2015. Vol. 39. P. 529—536.
  10. Henry D.J., Novák M., Hawthorne F., Ert A., Dutrow B., Uhe P., Pezzotta F. Nomenclature of the tourmaline-supergroup minerals. Amer. Miner. 2011. Vol. 96. P. 895—913.
  11. Jiang S-Y., Palmer M. R., Slack J. H. Alkali-deficient tourmaline from the Sullivan Pb-Zn-Ag deposit, British Columbia. Miner. Mag. 1997. Vol. 61. P. 853—860.
  12. Bačík P., Ozdín D., Pavel Uher P., Chovan M. Crystal chemistry and evolution of tourmaline in tourmalinites from Zlatá Idka, Slovakia. J. Geoscie. 2022. Vol. 67. P. 209—222.
  13. Henry D. J., Guidotti C. V. Tourmaline as a petrogenetic indicator mineral: an example from the staurolite grade metapelites of NW Maine. Amer. Miner. 1985. Vol. 70. P. 1—15.
  14. Henry D. J., Dutrow B. L. Ca substitution in Li-poor aluminous tourmaline. Canad. Miner. 1990. Vol. 28. P. 111—124.
  15. Henry D. J., Dutrow B. L. Metamorphic tourmaline and its petrologic applications. Boron: Mineralogy, Petrology and Geochemistry (E. S. Grew and L. M. Anovitz, editors). Rev. Miner. 2002. Vol. 33. P. 503—557.
  16. Henry D. J., Sun H., Slack J. F., Dutrow B. L. Tourmaline in meta-evaporites and highly magnesian rocks: perspectives from Namibian tourmalinites. Eur. J. Miner. 2008. Vol. 20. P. 889—904.
  17. Hinsberg van V. J., Henry D. J., Marschall H. R. Tourmaline: an ideal indicator of its host environment. Canad. Miner. 2011. Vol. 49. P. 1—16.
  18. Kudryavtseva O. E., Baksheev I. A. Compositional variations in tourmaline of the Berezovskoe gold deposit, Central Urals. Zapiski RMO (Proc. Russian Miner. Soc.). 2003. N 3. P. 108—125 (in Russian).
  19. Kuzmin V. I., Dobrovolskaya N. V., Solntseva L. S. Tourmaline and its use in exploration. Moscow: Nedra, 1979. 269 p. (in Russian).
  20. Lussier A. J., Hawthorne F. C. Oscillatory zoned liddicoatite from Anjanabonoina, Central Madagascar. II. Compositional variation and mechanisms of substitution. Canad. Miner. 2011. Vol. 49. P. 89—104.
  21. Marks M. A.W., Marschall H. R., Schühle P., Guth A., Wenzel T., Jacob D. E., Barth M., Markl G. Trace element systematics of tourmaline in pegmatitic and hydrothermal systems from the Variscan Schwarzwald (Germany): The importance of major element composition, sector zoning, and fluid or melt composition. Chem. Geol. 2013. Vol. 344. P. 73—90.
  22. Nishio-Hamane D., Minakawa T., Yamaura J.I, Oyama T., Ohnishi M., Shimobayashi N. Adachiite, a Si-poor member of the tourmaline supergroup from the Kiura mine, Oita Prefecture. Japan. J. Mineral. Petrol. Scie. 2014. Vol. 109. P. 74—78.
  23. Oydup Ch.K., Prudnikov S. G. History of exploration of the Terlig-Khaya quartz-barite-cinnbar deposit and opportunities for restarting mercury producation in Tuva. Natur. Resour. Envir. Soc. 2023. N 1. P. 42—52 (in Russian).
  24. Prokofiev V. Yu., Kiseleva G. D., Dolomanova-Topol A.A., Kryazhev S. G., Zorina L. D., Krasnov A. N., Borisovsky S. E., Trubkin N. V., Magazina L. V. Mineralogy and formation conditions of Novoshirokinsky base metal–gold deposit, Eastern Transbaikal Region, Russia. Geol. Ore Deposits. 2017. Vol. 59. P. 521—550.
  25. Sciuba M., Beaudoin G., Makvandi S. Chemical composition of tourmaline in orogenic gold deposits. Miner. Deposita. 2021. Vol. 56. P. 537—560.
  26. Selway J. B., Čerńy P., Hawthorne F. C., Novak M. The Tanco pegmatite at Bernic lake, Manitoba. XIY. Internal tourmaline. Canad. Miner. 2000. Vol. 38. P. 877—891.
  27. Scribner E. D., Cempírek J., Groat L. A., James Evans R., Biagioni C., Bosi F., Dini A., Hålenius U., Orlandi P., Pasero M. Magnesio-lucchesiite, CaMg3Al6(Si6O18)(BO3)3(OH)3O, a new species of the tourmaline supergroup. Amer. Miner. 2021. Vol. 106. P. 862—871.
  28. Slack J. F. Tourmaline association with hydrothermal ore deposits. Boron: mineralogy, petrology and geochemistry (E. S. Grew and L. M. Anovitz, editors). Rev. Miner. 2002. Vol. 33. P. 559—644.
  29. Taghipour B., Mackizadeh M. A. The origin of the tourmaline-turquoise association hosted in hydrothermally altered rocks of the Kuh-Zar Cu-Au-turquoise deposit, Damghan, Iran N. Jb. Geol. Palaöntol. Abh. 2014. Vol. 272/1. P. 61—77.
  30. Torro L., Proenza J. A., Melgarejo J.-C., Carrasco C., Domínguez H., Lewis J. F. Tourmaline composition near a diorite intrusive body under la Cuaba lithocap (Ampliación Pueblo Viejo District, Dominican Republic). Rev. Socie. Españ. Miner. 2012. N 16. P. 196—197.
  31. Yurgenson G. A., Kononov O. V. Sherlova Gora: a deposit for gemstones and rare metals deposit. Mineral. Almanac. 2014. Vol. 19. P. 12—81.
  32. Zaikov V. V., Lebedev V. I., Tyulkin V. G., Kuzhuget K. S., Grechishcheva V. I. Ore deposits of Tuva. Novosibirsk: Nauka, 1981. 201 p. (in Russian).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Geological sketch map (a) and section along line A—Б (б) of the Terlig-Khaya mercury deposit, Republic of Tuva. Geographical location of the deposit is asterisked in the insertion.

Baixar (3MB)
3. Fig. 2. Quartz veinlets and aggregates of tourmaline crystals in tourmalinites of the Terlig-Khaya mercury deposit

Baixar (3MB)
4. Fig. 3. Triangle and binary plots illustrating compositions of tourmaline from tourmalinite of the Terlig-Khaya mercury deposit

Baixar (1MB)
5. Fig. 4. Infrared (а) and Mössbauer (б) spectra for tourmaline from tourmalinite of the Terlig-Khaya mercury deposit

Baixar (707KB)

Declaração de direitos autorais © Russian academy of sciences, 2025