Акцессорные зональные хромиты из архейских коматиитов Карельского кратона: признаки метаморфических преобразований

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В работе представлены результаты изучения акцессорного хромита из архейских коматиитов (3.0—2.8 млрд лет) наиболее типичных зеленокаменных структур Карельского кратона. Выделено два типа зонального хромита, различающихся по составу и степени метаморфических преобразований. Показано, что первичный состав хромита почти нацело преобразован в ходе проградного метаморфизма зеленосланцевой и эпидот-амфиболитовой фаций.

Полный текст

Доступ закрыт

Об авторах

Сергей Анатольевич Светов

Карельский научный центр РАН

Email: ssvetov@krc.karelia.ru

доктор геолого-минералогических наук, директор института геологии Карельского научного центра РАН

Россия, 185910 Россия, Петрозаводск, ул. Пушкинская, 11

Светлана Юрьевна Чаженгина

Карельский научный центр РАН

Автор, ответственный за переписку.
Email: chazhengina@mail.ru
ORCID iD: 0000-0003-3412-0409

кандидат геолого-минералогических наук, старший научный сотрудник лаборатории геохимии, четвертичной геологии и геоэкологии

Россия, 185910 Россия, Петрозаводск, ул. Пушкинская, 11

Винод Сингх

Bundelkhand University

Email: vinodksingh@yahoo.com

Ph.D., Associate Professor

 
Индия, 284128 India,  Jhansi, Bundelkhand University

Зоя Павловна Рыбникова

Карельский научный центр РАН

Email: zoya_rybnikova@mail.ru

младший  научный сотрудник лаборатории геохимии, четвертичной геологии и геоэкологии

Россия, 185910 Россия, Петрозаводск, ул. Пушкинская, 11

Самит Мишра

Hemvati Nandan Bahuguna Garhwal University

Email: smpsgeo@gmail.com

Ph.D. Research Scholar, Department of Geology

Индия, 246174, India, Srinagar-Garhwal, Uttarakhand

Список литературы

  1. Abbott D. H., Isley A. E. The intensity, occurrence, and duration of superplume events and eras over geological time. J. Geodynamics. 2002. Vol. 34. P. 265-307.
  2. Arndt N. T., Lesher C. M., Barnes S. J. Komatiite. New York: Cambridge University Press, 2008. 466 p.
  3. Barnes S. J. Chromite in komatiites. I. Magmatic controls on crystallization and composition. J. Petrol. 1998. Vol. 39. P. 1689-1720.
  4. Barnes S. J. Chromite in komatiites. II. Modification during greenschist to mid-amphibolite facies metamorphism. J. Petrol. 2000. Vol. 41. P. 387-409.
  5. Barnes S. J., Kunilov V. Y. Spinels and Mg-ilmenites from the Norilʼsk 1 and Talnakh intrusions and other mafic rocks of the Siberian flood basalt province. Econ. Geol. 2000. Vol. 95. P. 1701-1717.
  6. Bjerg E. A., de Brodtkorb M. K., Stumpfl E. F. Compositional zoning in Zn-chromites from the Cordillera Frontal Range, Argentina. Miner. Mag. 1993. Vol. 57. N 1. P. 131-139.
  7. Burkhard D. J. M. Accessory chromium spinels: their coexistence and alteration in serpentinites. Geochim. Cosmochim. Acta. 1993. Vol. 57. P. 1297-1306.
  8. Colas V., Gonzalez-Jiménez J. M., Griffin W. L., Fanlo I., Gervilla F., OʼReilly S. Y., Pearson N. J., Kerestedjian T., Proenza J. A. Fingerprints of metamorphism in chromite: New insights from minor and trace elements. Chem. Geol. 2014. Vol. 389. P. 137-152.
  9. Dick H. J. B., Bullen T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotite and spatially associated lavas. Contrib. Miner. Petrol. 1984. Vol. 86. P. 54-76.
  10. Farahat E. S. Chrome-spinels in serpentinites and talc carbonates of the El Ideid-El Sodmein District, central Eastern Desert, Egypt: their metamorphism and petrogenetic implications. Chem. der Erde. 2008. Vol. 68. P. 193-205.
  11. Fanlo I., Colas V., Subias I. Zn-, Mn- and Co-rich chromian spinels from the Bou-Azzer mining district (Morocco): Constraints on their relationship with the mineralizing process. Ore Geol. Rev. 2015. Vol. 71. P. 82-98.
  12. Gervilla F., Padrón-Navarta J. A., Kerestedjian T., Sergeeva I., Gonzalez-Jiménez J. M., Fanlo I. Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: a two-stage process. Contrib. Miner. Petrol. 2012. Vol. 164. P. 643-657.
  13. Gonzalez-Jiménez J. M., Barra F., Garrido L. N. F., Reich M., Satsukawa T., Romero R., Salazar E., Colas V., Orellana F., Rabbia O., Plissart G., Morata D. A secondary precious and base metal mineralization in chromitites linked to the development of a Paleozoic accretionary complex in Central Chile. Ore Geol. Reviews. 2016. Vol. 78. P. 14-40.
  14. Gonzalez-Jiménez J. M., Locmelis M., Belousova E., Griffin W. L., Gervilla F., Kerestedjian T., OʼReilly S. Y., Pearson N. J., Sergeeva I. Genesis and tectonic implications of podiform chromitites in the metamorphosed ultramafic massif of Dobromirtsi (Bulgaria). Gondwana Research. 2015. Vol. 27. P. 555-574.
  15. Gonzalez-Jiménez J. M., Proenza J., Griffin W. L., Gervilla F., OʼReilly S. Y., Akbulut M., Pearson N. J., Arai S. Chromitites in ophiolites: How, where, when, why? Part I. A review and new ideas on the origin and significance of platinum-group minerals. Lithos. 2014. Vol. 189. P. 127-139.
  16. Groves D. I., Barrett F. M., Binns R. A., McQueen K. G. Spinel phases associated with metamorphosed volcanic-type iron-nickel sulfide ores from Western Australia. Econ. Geol. 1977. Vol. 72. P. 1224-1244.
  17. Hanski E. Komatiitic and tholeiitic metavolcanics of the Sivikkovaara area in the Archean Kuchmo greenstone belt, eastern Finland. Bull. Geol. Soc. Finl. 1980. Vol. 52. P. 67-100.
  18. Huhma H., Manttar I., Peltone P., Kontine A., Halkoah T., Hansk E., Hokkane T., Hölttä P., Juopperi H., Konnunaho J., Lahaye Y., Luukkonen E., Pietikainen K., Pulkkinen A., Sorjonen-Ward P., Vaasjoki M., Whitehouse M. The age of the Archaean greenstone belts in Finland. In: The Archean of the Karelia Province in Finland. Geol. Surv. Finl., 2012. p. 74-175.
  19. Isley A. E., Abbott D. H. Plume-related mafic volcanism and the deposition of banded iron formation. Geophys. Research. 1999. Vol. 104. P. 15461-15477.
  20. Kamenetsky V. S., Crawford A. J., Meffre S. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol. 2001. Vol. 42. № 4. P. 655-671.
  21. Kozhevnikov V. N. Archean greenstone belts of Karelian craton. Petrozavodsk: IG KRC RAS, 2000. 223 p. (in Russian).
  22. Kulikov V. S., Kulikova V. V., Buchkov Y. V. The Vetreny Belt: tectonic and petrological characteristics of Paleoproterozoic east-southern part of the Fennoscandian Shield. In: Geology of Karelia: from Archean to Present. Petrozavodsk: IG KRC RAS, 2011. p. 91-103 (in Russian).
  23. Liipo J. P., Vuollo J. I., Nykäinen V. M., Piirainen T. A. Zoned Zn-rich chromite from the Näätäniemi serpentinite massif, Kuhmo greenstone belt, Finland. Canad. Miner. 1995. Vol. 33. P. 537-45.
  24. Manikyamba C., Kerrich R., Khanna T. C., Krishna A. K., Satyanarayanan M. Geochemical systematics of komatiite-tholeiite and adakitic-arc basalt associations: the role of a mantle plume and convergent margin in formation of the Sandur Superterrane, Dharwar craton, India. Lithos. 2008. Vol. 106. P. 155-172.
  25. Maier W. D., Peltonen P., Halkoaho T., Hanski E. Geochemistry of komatiites from the Tipasjarvi, Kuhmo, Suomussalmi, Ilomantsi and Tulppio greenstone belts, Finland: Implications for tectonic setting and Ni sulphide prospectivity. Precambrian Research. 2013. Vol. 228. P. 63-84.
  26. Pagé P., Barnes S. J. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines ophiolite, Québec, Canada. Econ. Geol. 2009. Vol. 104. N 7. P. 997-1018.
  27. Page P., Barnes S. J., Bedard J. H., Zientek M. L. In situ determination of Os, Ir, and Ru in chromites formed from komatiite, tholeiite and boninite magmas: Implications for chromite control of Os, Ir and Ru during partial melting and crystal fractionation. Chem. Geol. 2012. Vol. 302-303. P. 3-15.
  28. Polat A., Kerrich R. Reading the geochemical fingerprints of Archean hot subduction volcanic rocks: evidence for accretion and crustal recycling in mobile tectonic regime. In: Archean Geodynamics and Environments. Washington: Am. Geoph. Union, 2006. P. 189-213.
  29. Proenza J., Ortega-Gutiérrez F., Camprubí A., Tritlla J., Elías-Herrera M., Reyes-Salas M. Paleozoic serpentinite-enclosed chromitites from Tehuitzingo (Acatlán Complex, southern Mexico): a petrological and mineralogical study. J. South Amer. Earth Sci. 2004. Vol. 16. № 8. P. 649-666.
  30. Puchtel L. S., Hofmann A. W., Mezger K. Oceanic plateau model for continental crustal growth in the Archaean: A case study from the Kostomuksha greenstone belt, NW Baltic Shield. Earth Planet. Sci. Lett. 1998. Vol. 155. P. 57-74.
  31. Sack R. O., Ghiorso M. S. Chromian spinels as petrogenetic indicators: thermodynamics and petrological applications. Amer. Miner. 1991. Vol. 76. № 5-6. P. 827-847.
  32. Santti J., Kontinen A., Sorjonen-Ward P., Johanson B., Pakkanen L. Metamorphism and chromite in serpentinized and carbonate-silica altered peridotites of the Paleoproterozoic Outokumpu-Jormua ophiolite belt, Eastern Finland. Int. Geol. Rev. 2006. Vol. 48. P. 494-546.
  33. Saumur B. M., Hattori K. Zoned Cr-spinel and ferritchromite alteration in forearc mantle serpentinites of the Rio San Juan Complex, Dominican Republic. Miner. Mag. 2013. Vol. 77. N 1. P. 117-136.
  34. Slabunov A. I., Lobach-Zhuchenko S. B., Bibikova E. V, Sorjonen-Ward P., Balagansky V. V., Volodichev O. I., Shchipansky A. A., Svetov S. A., Chekulaev V. P., Arestova N. A., Stepanov V. S. The Archaean nucleus of the Fennoscandian (Baltic) Shield. Geol. Soc. London Memoirs. 2006. Vol. 32. P. 627-644.
  35. Smolkin V. F., Borisova V. V., Svetov S. A, Borisov A. E. Late Archean komatiites of the Ura Bay-Titovka Structure, northwestern Kola Region. Petrology. 2000. Vol. 8. P. 177-199.
  36. Svetov S. A. Magmatic systems of ocean-continent transition zones in the Archean part of the Fennoscandian Shield. Petrozavodsk: IG KRC RAS, 2005. 230 p. (in Russian).
  37. Svetov S. A., Huhma H. Geochemistry and Sm-Nd systematics of the Archean komatiitic-tholeiitic associations of the Vedlozero-Segozero greenstone belt. Central. Doklady Earth Sci. 1999. Vol. 369. N 8. P. 1204-1207 (in Russian).
  38. Svetov S. A., Svetova A. I., Huhma H. Geochemistry of the komatiite-tholeiite rock association in the Vedlozero-Segozero Archean greenstone belt, Central Karelia. Geochem. Int. 2001. Vol. 39. P. 24-38.
  39. Svetova A. I. Archean volcanism of the Vedlozero-Segozero Greenstone Belt of Karelia. Petrozavodsk: IG KRC RAS, 1988. 148 p. (in Russian).
  40. Vrevsky A. B. Petrology and geodynamic regimes of the evolution of Archean lithosphere (a case study of the east-northern part of the Fennoscandian Shield). Leningrad: Nauka, 1989. 143 p. (in Russian).
  41. Wang J., Hattori K. H., Li J. P., Stern C. Oxidation state of Paleozoic subcontinental lithospheric mantle below the Pali Aike. Lithos. 2008. Vol. 105. P. 98-110.
  42. Wylie A. G., Candela P. A., Burke T. M. Compositional zoning in unusual Zn-rich chromite from the Sykesville district of Maryland and its bearing on the origin of «ferritchromit». Amer. Miner. 1987. Vol. 72. P. 413-422.
  43. Zhou M.-F., Kerrich R. Morphology and composition of chromite in komatiites from the Belingwe Greenstone Belt, Zimbabwe. Amer. Miner. 1992. V. 59. P. 608-612.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Геологическая схема Карельского кратона [по В. Кожевникову (2000) с изменениями]. 1—5 — архейские зеленокаменные пояса с возрастом >3.0—2.9 Ga (1), 2.9—2.8 Ga (2), 2.8—2.7 Ga (3), <2.75 Ga (4), неопределенным (5); 6 — палеопротерозойские супракрустальные породы; 7—10 — архейская кора с возрастом 3.5—2.85 Ga (7), 3.0—2.8 Ga (8), 2.85—2.7 Ga (9), неопределенным (10); 11 — Беломорский подвижный пояс; 12 — высокометамофизованные комплексы; 13 — Бураковкий плутон; 14 — Салминский массив гранитов рапакиви; 15 — палеозойские комплексы; 16 — разломы и тектонические зоны; 17 — шир-зоны между Беломорским подвижным поясом и Карельским кратоном; 18 — исследованные зеленокаменные структуры: Хизоваарская (1), Костомукшская (2), Сиивиковаарская (3), Совдозерская (4), Паласельгинская (5), Койкарская (6), Хаутаваарская (7).

Скачать (296KB)
3. Рис. 2. Электронно-микроскопические изображения хромита из архейских коматиитов: зональный хромит I типа из Совдозерской (а) Хаутаваарской (b), Костомукшской (с) и Сиивиковаарской (d) структур; зональный хромит II типа из Совдозерской (e) и Сиивиковаарской (f) структур; хром-магнетит из Хаутаваарской (g) и Костомукшской (h) структур. Масштабная линейка соответствует 50 мкм.

Скачать (107KB)
4. Рис. 3. Микрозондовые профили через зерна хромита, показанные на рис. 2: зональныый хромит I типа из Совдозерской (а) Хаутаваарской (b), Костомукшской (с) и Сиивиковаарской (d) структур; зональный хромит II типа из Совдозерской (e) и Сиивиковаарской (f) структур; хром-магнетит из Хаутаваарской (g) и Костомукшской (h) структур. Темно серым цветом обозначены ядра хромита I типа, серым — переходная зона хромита I типа или ядра хромита II типа, светло серым — каймы.

Скачать (175KB)
5. Рис. 4. Спайдер-диаграммы макро- и микроэлементов в ядре и кайме зонального хромита I типа из Костомукшской структуры в сравнении с неметаморфизованным хромитом из офиолитов (Pagé, Barnes, 2009) и коматиитов (Gonzalez-Jiménez et al., 2014). Содержания элементов нормализованы по составу хромита из MORB (Pagé, Barnes, 2009).

Скачать (57KB)
6. Рис. 5. Составы зонального хромита из архейских коматиитов восточной части Фенноскандии из Совдозерской (а), Хаутаваарской (b), Костомукшской (с) и Сиивиковаарской (d) структур. Кривая сольвуса построена (Sack, Ghiorso, 1991) для температур 500, 550 и 600 °C для хромита равновесного с оливином, содержащим 90 % форстеритового минала.

Скачать (79KB)

© Российская академия наук, 2019