Prospects for the use of radiolucent materials in the manufacture of external fixation devices



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The current direction of searching for new technological solutions for improve the performance characteristics of medical devices is the use of non-radiopaque materials. The literature and analyzes the possibility of using modern composite materials with non-radiopaque properties in external fixation devices (EFD) are reviewed in the paper. The most significant aspects of using polymer composites in medical devices are highlighted. The physical, mechanical and radiographic properties of composite materials that are most suitable for creating beam-rod and ring devices are described. An additional advantage of non-radiopaque EFD is highlighted: lightness, ensured by the low density of polymeric materials, which are the matrix for composites, compared to metal alloys from which the elements of the EFD are made. The possibility of autoclave sterilization of products made of polymer composites that have the potential to be used as components of external fixation devices is shown. Clinical cases of using external fixators that have non-radiopaque components in their design are considered and examples of commercial (mass-produced) external fixation devices are given. The possibility of using 3D printing to create EFD components, which is not currently considered as the main technology for creating the EFD, has been demonstrated. Non-radiopaque EFD made of modern composite materials facilitate better fracture reposition, targeted radiation therapy in the required doses, and accurate radiographic visualization during the intraoperative and postoperative periods. This allows for timely treatment adjustments and reduces the risks of possible complications. The development of EFD is a promising scientific and production area aimed at solving specific clinical problems.

Full Text

Restricted Access

About the authors

Leonid L. Bionyshev-Abramov

Priorov Central Institute for Trauma and Orthopedics

Email: sity-x@bk.ru
ORCID iD: 0000-0002-1326-6794
SPIN-code: 1192-3848
Russian Federation, 10 Priorova str., 127299 Moscow

Yulia S. Lukina

Priorov Central Institute for Trauma and Orthopedics; Mendeleev University of Chemical Technology of Russia

Email: lukina_rctu@mail.ru
ORCID iD: 0000-0003-0121-1232
SPIN-code: 2814-7745

PhD

Russian Federation, Moscow; Moscow

Valery G. Bulgakov

Priorov Central Institute for Trauma and Orthopedics

Email: valb5@mail.ru
ORCID iD: 0000-0003-2573-8231
SPIN-code: 1689-7240

PhD

Russian Federation, Moscow

Nikolay S. Gavryushenko

Priorov Central Institute for Trauma and Orthopedics

Author for correspondence.
Email: testlabcito@mail.ru
ORCID iD: 0000-0002-7198-433X
SPIN-code: 3335-6472

MD, Dr. Sci. (Tech.), Professor

Russian Federation, Moscow

References

  1. Vicenti G, Antonella A, Filipponi M, et al. A comparative retrospective study of locking plate fixation versus a dedicated external fixator of 3-and 4-part proximal humerus fractures: Results after 5 years. Injury. 2019;50(Suppl 2):S80–S88. doi: 10.1016/j.injury.2019.01.051
  2. Rigal S, Mathieu L, de l'Escalopier N. Temporary fixation of limbs and pelvis. Orthop Traumatol Surg Res. 2018;104(1S):S81–S88. doi: 10.1016/j.otsr.2017.03.032
  3. Korobeinikov A, Popkov D. Use of external fixation for juxta-articular fractures in children. Injury. 2019;50(Suppl 1):S87–S94. doi: 10.1016/j.injury.2019.03.043
  4. Swords MP, Weatherford B. High-energy pilon fractures: role of external fixation in acute and definitive treatment. What are the indications and technique for primary ankle arthrodesis? Foot Ankle Clin. 2020;25(4):523–536. doi: 10.1016/j.fcl.2020.08.005
  5. Abdul Wahab AH, Wui NB, Abdul Kadir MR, Ramlee MH. Biomechanical evaluation of three different configurations of external fixators for treating distal third tibia fracture: finite element analysis in axial, bending and torsion load. Comput Biol Med. 2020;127:104062. doi: 10.1016/j.compbiomed.2020.104062
  6. Kolasangiani R, Mohandes Y, Tahani M. Bone fracture healing under external fixator: investigating impacts of several design parameters using Taguchi and ANOVA. Biocybernetics and Biomed Eng. 2020;40:1525-1534.
  7. Simpson AHRW, Robiati L, Jalal MMK, Tsang STJ. Non-union: indications for external fixation. Injury. 2019;50(Suppl 1):S73–S78. doi: 10.1016/j.injury.2019.03.053
  8. Bliven EK, Greinwald M, Hackl S, Augat P. External fixation of the lower extremities: biomechanical perspective and recent innovations. Injury. 2019;50(Suppl 1):S10–S17. doi: 10.1016/j.injury.2019.03.041
  9. Sala F, Talamonti T, Agus MA, Capitani D. Sequential reconstruction of complex femoral fractures with circular hybrid Sheffield frame in polytrauma patients. Musculoskeletal Surgery. 2010;94(3):127–136. doi: 10.1007/s12306-010-0087-2
  10. Gorodnichenko AI. The Main Directions of Creation and Implementation of External Fixation Devices in Traumatology and Orthopedics in Russia at the Turn of 2000 [Internet]. Moscow; 1999. Available from: https://kremlin-medicine.ru/index.php/km/article/download/592/585. Accessed: August 13, 2024. (In Russ.)
  11. Tyulyaev NV, Vorontsova TN, Solomin LN, Skomoroshko PV. Development history and modern concern of problem of extremity injuries by external fixation (review). Traumatology and orthopedics of Russia. 2011;(2):179–190. EDN: OFXXGD
  12. Barrett JF, Keat N. Artifacts in CT: recognition and avoidance. Radiographics. 2004;24(6):1679–1691. doi: 10.1148/rg.246045065
  13. Boas FE, Fleischmann D. CT artifacts: causes and reduction techniques. Imaging Med. 2012;4(2):229–240. doi: 10.2217/iim.12.13
  14. De Man B, Nuyts J, Dupont P, Marchal G, Suetens P. Metal streak artifacts in X-ray computed tomography: a simulation study. IEEE Trans Nucl Sci. 1999;46(3):691–696.
  15. Li CS, Vannabouathong C, Sprague S, Bhandari M. The use of carbon-fiber-reinforced (CFR) PEEK material in orthopedic implants: a systematic review. Clin Med Insights Arthritis Musculoskelet Disord. 2015;8:33–45. doi: 10.4137/CMAMD.S20354
  16. Zimel MN, Hwang S, Riedel ER, Healy JH. Carbon fiber intramedullary nails reduce artifact in postoperative advanced imaging. Skeletal Radiol. 2015;44(9):1317–1325. doi: 10.1007/s00256-015-2158-9
  17. Krishnakumar S, Senthilvelan T. Polymer composites in dentistry and orthopedic applications — a review. Mater Today: Proceedings. 2001;46:9707–9713.
  18. Banoriya D, Purohit R, Dwivedi RK. Advanced application of polymer-based biomaterials. Mater Today: Proceedings. 2017;4:3534–3541.
  19. Lee M, Chung K, Lee C, et al. The viscoelastic bending stiffness of fiber-reinforced composite Ilizarov C-rings. Compos Sci Technol. 2001;61(16):2491–2500. doi: 10.1016/S0266-3538(01)00172-5
  20. Bibbo C, Dubin J. Orthoplastic management of complex bone and soft tissue pathology with a fully radiolucent circular external fixation system. Foot & Ankle Surgery: Techniques, Reports & Cases. 2024;4(3):100412, 73–75.
  21. Fragomen AT, Rozbruch SR. The mechanics of external fixation. HSS J. 2007;3(1):13–29. doi: 10.1007/s11420-006-9025-0
  22. Emami A, Mjöberg B, Karlström G, Larsson S. Treatment of closed tibial shaft fractures with unilateral external fixation. Injury. 1995;26(5):299–303. doi: 10.1016/0020-1383(95)00037-a
  23. Kani KK, Porrino JA, Chew FS. External fixators: looking beyond the hardware maze. Skeletal Radiol. 2020;49(3):359–374. doi: 10.1007/s00256-019-03306-w
  24. Gasser B, Boman B, Wyder D, Schneider E. Stiffness Characteristics of the Circular Ilizarov Device as Opposed to Conventional External Fixators. Journal of Biomechanical Engineering. 1990;112(1):15. doi: 10.1115/1.2891120
  25. Hasler CC, Krieg AH. Current concepts of leg lengthening. J Child Orthop. 2012;6(2):89–104. doi: 10.1007/s11832-012-0391-5
  26. Solomin LN, Paley D, Shchepkina EA, Vilensky VA, Skomoroshko PV. A comparative study of the correction of femoral deformity between the Ilizarov apparatus and Ortho-SUV Frame. Int Orthop. 2014;38(4):865–872. doi: 10.1007/s00264-013-2247-0
  27. Solomin LN. Fundamentals of transosseous osteosynthesis with the G.A. Ilizarov apparatus: Monograph. SPb: MORSAR AV; 2005. 544 p. (In Russ.)
  28. Fernando PLN, Abeygunawardane A, Wijesinghe PCI, Dharmaratne P, Silva P. An engineering review of external fixators. Medical Engineering & Physics. 2021;98:91–103. doi: 10.1016/j.medengphy.2021.11.002
  29. Tomanec F, Rusnakova S, Kalova M. Innovation of Ilizarov stabilization device with the design changes. MM Sci J. 2019;1:2732–2738. doi: 10.17973/MMSJ.2019_03_2018005
  30. Iobst CA. New trends in ring fixators. J Pediatr Orthop. 2017;37(Suppl 2):S18–S21. doi: 10.1097/BPO.0000000000001026
  31. Priadythama I, Herdiman L, Rochman T. Future and challenge of 3D printed bone external fixator: Statics stress simulations of polycarbonate Taylor spatial frame ring. AIP Conference Proceedings: AIP Publishing. 2020;2217(1).
  32. Qiao F, Li D, Jin Z, et al. A novel combination of computer-assisted reduction technique and three-dimensional printed patient-specific external fixator for treatment of tibial fractures. Int Orthop. 2016;40(4):835–841. doi: 10.1007/s00264-015-2943-z
  33. Pervan N, Mesic E, Colic M, Avdic V. Stiffness Analysis of the Sarafix External Fixator based on Stainless Steel and Composite Material. TEM Journal. 2015;4(4):366.
  34. Ong WH, Chiu WK, Russ M, Chiu ZK. Integrating sensing elements on external fixators for healing assessment of fractured femur. Structural Control and Health Monitoring. 2016;23(12):1388–1404.
  35. Godara A, Raabe D, Green S. The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications. Acta Biomater. 2007;3(2):209–220. doi: 10.1016/j.actbio.2006.11.005
  36. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32):4845–4869. doi: 10.1016/j.biomaterials.2007.07.013
  37. Williams D. Polyetheretherketone for long-term implantable devices. Med Device Technol. 2008;19(1):8, 10–11.
  38. Nieminen T, Kallela I, Wuolijoki E, et al. Amorphous and crystalline polyetheretherketone: Mechanical properties and tissue reactions during a 3-year follow-up. J Biomed Mater Res A. 2008;84(2):377–383. doi: 10.1002/jbm.a.31310
  39. Steinberg EL, Rath E, Shlaifer A, et al. Carbon fiber reinforced PEEK Optima-A composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater. 2013;17:221–228. doi: 10.1016/j.jmbbm.2012.09.013
  40. Black J, Hastings G, editors. Handbook of biomaterial properties. Springer Science & Business Media; 2013.
  41. Deng Y, Zhou P, Liu X, et al. Preparation, characterization, cellular response and in vivo osseointegration of polyetheretherketone/nano-hydroxyapatite/carbon fiber ternary biocomposite. Colloids Surf B Biointerfaces. 2015;136:64–73. doi: 10.1016/j.colsurfb.2015.09.001
  42. Kalová M, Tomanec F, Rusnakova S, Manas L, Jonsta Z. Mold design for rings of external fixator. MM Sci J. 2019;2019(1):2739–2745. doi: 10.17973/MMSJ.2019_03_2018002
  43. Baidya KP, Ramakrishna S, Rahman M. An Investigation on the Polymer Composite Medical Device — External Fixator. Journal of reinforced plastics and composites. 2003;22(6):563–590. doi: 10.1106/073168403023292
  44. Xie M, Cao Y, Cai X, et al. The Effect of a PEEK Material-Based External Fixator in the Treatment of Distal Radius Fractures with Non-Transarticular External Fixation. Orthopaedic Surgery. 2021;13(1):90–97. doi: 10.1111/os.12837
  45. Frydrýšek K, Jořenek J, Učeň O, et al. Design of External Fixators used in Traumatology and Orthopaedics — Treatment of Fractures of Pelvis and its Acetabulum. Procedia Engineering. 2012;48:164–173. doi: 10.1016/J.PROENG.2012.09.501
  46. Basat PAM, Estrella EP, Magdaluyo Jr ER. Material selection and design of external fixator clamp for metacarpal fractures. Materials Today: Proceedings. 2020;33:1974–1978. doi: 10.1016/J.MATPR.2020.06.129
  47. Gauthier CM, Kowaleski MP, Gerard PD, Rovesti GL. Comparison of the axial stiffness of carbon composite and aluminium alloy circular external skeletal fixator rings. Vet Comp Orthop Traumatol. 2013;26(3):172–176. doi: 10.3415/VCOT-12-03-0047
  48. Dall’Oca C, Christodoulidis A, Bortolazzi R, Bartolozzi P, Lavini F. Treatment of 103 displaced tibial diaphyseal fractures with a radiolucent unilateral external fixator. Arch Orthop Trauma Surg. 2010;130(11):1377–1382. doi: 10.1007/s00402-010-1090-7
  49. Kershaw CJ, Cunningham JL, Kenwright J. Tibial external fixation, weight bearing, and fracture movement. Clin Orthop Relat Res. 1993;(293):28–36.
  50. Kenwright J, Richardson JB, Cunningham JL, et al. Axial movement and tibial fractures: a controlled randomised trial of treatment. The Journal of Bone & Joint Surgery British Volume. 1991;73(4):654–659. doi: 10.1302/0301-620X.73B4.2071654
  51. Richardson JB, Gardner TN, Evans M, Kuiper JH, Kenwright J. Dynamisation of tibial fractures. The Journal of Bone & Joint Surgery British Volume. 1995;77(3):412–416.
  52. Egger EL, Gottsauner-Wolf F, Palmer J, Aro HT, Chao EY. Effects of axial dynamization on bone healing. J Trauma. 1993;34(2):185–192. doi: 10.1097/00005373-199302000-00001
  53. Widanage KN, De Silva MJ, Lalitharatne TD, Bull AM, Gopura RARC. Developments in circular external fixators: A review. Injury. 2023;54(12):111157. doi: 10.1016/j.injury.2023.111157

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-76249 от 19.07.2019.