GLIAL BARRIERS AT SPINAL CORD INJURY AS A TARGET OF GENE-CELL THERAPY



Cite item

Full Text

Abstract

The role of glial barriers arising at spinal cord injury was shown. Along with the well-known its negative role there was discussed the positive role of glial barrier and reactive astrocytes in maintaining the structural integrity of the brain tissue and the process of neuroregeneration. Cytokines of transforming growth factor family regulate the phenotype of astrocytes and control the production of inhibitors of axonal regeneration. The results of our studies of evaluating the efficacy of posttraumatic regeneration of rat spinal cord in the expression of pathological cavitation during transplantation in the damaged area of osmetic mucosa cells and mononuclear cells of human umbilical cord blood, as well as local delivery to the same area of therapeutic genes ofneurotrophic and angiogenic factors vegf and fgf2are presented.

Full Text

ГЛИАЛЬНЫЕ БАРЬЕРЫ ПРИ ТРАВМЕ СПИННОГО МОЗГА КАК МИШЕНЬ ГЕННО-КЛЕТОЧНОЙ ТЕРАПИИ
×

About the authors

Yuri A Chelyshev

Kazan State Medical University

Email: chelyshev-kzn@yandex.ru
Department of Histology, Cytology and Embryology 420012 Kazan, Butlerov street,49

Gulnara F Shaymardanova

Institution of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academyof Sciences

Laboratory of the molecular basis of pathogenesis 420111, Kazan, Lobachevsky street, 2/31

Yana O Muhamedshina

Kazan State Medical University

Department of Histology, Cytology and Embryology 420012 Kazan, Butlerov street,49

Maria V Nigmetzyanova

Kazan State Medical University

Department of Histology, Cytology and Embryology 420012 Kazan, Butlerov street,49

References

  1. Boido M.D., Garbossa S. et al. Early graft of neural precursors in spinal cord compression reduces glial cyst and improves function // J. Neurosurg Spine. 2011. Vol. 15, № 1. P. 97‒106
  2. Boyd J.G., Lee J. et al. LacZ-expressing olfactory ensheathing cells do not associate with myelinated axons after implantation into the compressed spinal cord // Proc. Natl. Acad. Sci. USA. 2004. Vol. 101, № 7. P. 2162‒2166.
  3. Bradbury E.J., Carter L.M. Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury // Brain Res Bull. 2011. Vol. 84, № 4-5. P. 306‒316.
  4. Chen C.T., Foo N.H. et al. Infusion of human umbilical cord blood cells ameliorates hind limb dysfunction in experimental spinal cord injury through anti-inflammatory, vasculogenic and neurotrophic mechanisms // Pediatr. Neonatol. 2008. Vol. 49,№ 3. P. 77‒83.
  5. Dasari V.R. Veeravalli K.K. et al. Neuronal apoptosis is inhibited by cord blood stem cells after spinal cord injury // J. Neurotrauma. 2009. Vol. 26, № 11. P. 2057—2069.
  6. Desclaux M. Teigell M. et al. A novel and efficient gene transfer strategy reduces glial reactivity and improves neuronal survival and axonal growth in vitro // PLoS One. 2009. Vol. 7. P. 6227.
  7. Fitch M.T., Doller C. et al. Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma // J. Neurosci. 1999. Vol. 19, № 19. P. 8182‒8198.
  8. Furuya T., Hashimoto M. et al. Treatment of rat spinal cord injury with a Rho-kinase inhibitor and bone marrow stromal cell transplantation // Brain Res. 2009. Vol. 1295. P. 192‒202.
  9. Gonzalez A.M. Berry M. et al. Matrix-mediated gene transfer to brain cortex and dorsal root ganglion neurones by retrograde axonal transport after dorsal column lesion // J. Gene Med. 2006. Vol. 8, № 7. P. 901‒909.
  10. Guest J.D., Herrera L. et al. Xenografts of expanded primate olfactory ensheathing glia support transient behavioral recovery that is independent of serotonergic or corticospinal axonal regeneration in nude rats following spinal cord transection // Exp. Neurol. 2008. Vol. 212, № 2. P. 261‒274.
  11. Hendriks W.T., Eggers R. et al. Gene transfer to the spinal cord neural scar with lentiviral vectors: predominant transgene expression in astrocytes but not in meningeal cells // J. Neurosci. Res. 2007. Vol. 85, № 14. P. 3041‒3052.
  12. Jeong S.R., Kwon et al. M.J. Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury // Exp. Neurol. 2012. Vol. 233, № 1. P. 312‒322.
  13. Jones L.L., Margolis et al. R.U. The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury // Exp. Neurol. 2003. Vol. 182, № 2. P. 399‒411.
  14. Jones L.L., Sajed D. et al. Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition // J. Neurosci. 2003. Vol. 23, № 28. P. 9276‒9288.
  15. Kamada T., Koda M. et al. Transplantation of human bone marrow stromal cell-derived Schwann cells reduces cystic cavity and promotes functional recovery after contusion injury of adult rat spinal cord // Neuropathology. 2011. Vol. 31, № 1. P. 48‒58.
  16. Karimi-Abdolrezaee S., Schut D. et al. Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury // PLoS. One. 2012. Vol. 7, № 5. P. 375—89.
  17. Lepore A.C., Bakshi A. et al. Neural precursor cells can be delivered into the injured cervical spinal cord by intrathecal injection at the lumbar cord // Brain Res. 2005. Vol. 1045, № 1-2. P. 206‒216.
  18. Nishio Y., Koda M. et al. The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats // J. Neurosurg. Spine. 2006. Vol. 5, № 5. P. 424‒433.
  19. Okada S., Nakamura M. et al. Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury // J. Neurosci. Res. 2004. Vol. 76, № 2. P. 265‒276.
  20. Pekovic S., Filipovic R. et al. Downregulation of glial scarring after brain injury: the effect of purine nucleoside analogue ribavirin // Ann. NY Acad. Sci. 2005. Vol. 1048. P. 296‒310.
  21. Pfeifer K., Vroemen M. et al. Adult neural progenitor cells provide a permissive guiding substrate for corticospinal axon growth following spinal cord injury // Eur. J. Neurosci. 2004. Vol. 20, № 7. P. 1695‒1704.
  22. Ramer L.M., Au E. et al. Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury // J. Comp. Neurol. 2004. Vol. 473, № 1. P. 1‒15.
  23. Richter M.W., Fletcher P.A. et al. Lamina propria and olfactory bulb ensheathing cells exhibit differential integration and migration and promote differential axon sprouting in the lesioned spinal cord // J. Neurosci. 2005. Vol. 25, № 46. P. 10700‒10711.
  24. Ruff C.A., Wilcox J.T. et al. Cell-based transplantation strategies to promote plasticity following spinal cord injury // Experimental neurology. 2012. Vol. 235, № 1. P. 78‒90.
  25. Ruitenberg M.J., Levison D.B. et al. NT-3 expression from engineered olfactory ensheathing glia promotes spinal sparing and regeneration // Brain. 2005. Vol. 128, № 4. P. 839‒853.
  26. Shang A.J., Hong S.Q. et al. NT-3-secreting human umbilical cord mesenchymal stromal cell transplantation for the treatment of acute spinal cord injury in rats // Brain Res. 2011. Vol. 1391. P. 102‒113.
  27. Shen Y., Tenney A.P. et al. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration // Science. 2009. Vol. 326. № 5952. P. 592‒596.
  28. Sherman L.S. Back S.A. et al. A ‘GAG’ reflex prevents repair of the damaged CNS // Trends Neurosci. 2008. Vol. 31.№ 1. P. 44‒52.
  29. Sheth R.N., Manzano G. et al. Transplantation of human bone marrow-derived stromal cells into the contused spinal cord of nude rats // J. Neurosurg. Spine. 2008. Vol. 8, № 2. P. 153‒162.
  30. Someya Y., Koda M. et al. Reduction of cystic cavity, promotion of axonal regeneration and sparing, and functional recovery with transplanted bone marrow stromal cell-derived Schwann cells after contusion injury to the adult rat spinal cord // J. Neurosurg. Spine. 2008. Vol. 9, № 6. P. 600‒610.
  31. Sykova E., Jendelova P. et al. Bone marrow stem cells and polymer hydrogels--two strategies for spinal cord injury repair // Cell Mol. Neurobiol. 2006. Vol. 26, № 7‒8. P 1113‒1129.
  32. Taylor L., Jones L. et al. Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord // J. Neurosci. 2006. Vol. 26, № 38. P. 9713‒9721.
  33. Tu J., Liao J. et al. Reaction of endogenous progenitor cells in a rat model of posttraumatic syringomyelia // J. Neurosurg. Spine. 2011. Vol. 14, № 5. P. 573‒582.
  34. Tuszynski M.H., Grill R. et al. NT-3 gene delivery elicits growth of chronically injured corticospinal axons and modestly improves functional deficits after chronic scar resection // Exp. Neurol. 2003. Vol. 181, № 1. P. 47‒56.
  35. Verdu E., Garcia-Alias G. et al. Effects of ensheathing cells transplanted into photochemically damaged spinal cord // Neuroreport. 2001. Vol. 12, № 11. P. 2303‒2309.
  36. Xia Y. Zhao T. et al. Antisense vimentin cDNA combined with chondroitinase ABC reduces glial scar and cystic cavity formation following spinal cord injury in rats // Biochem. Biophys. Res. Commun. 2008. Vol. 377, № 2. P. 562‒566.
  37. Yazdani S.O., Pedram et al. M. A comparison between neurally induced bone marrow derived mesenchymal stem cells and olfactory ensheathing glial cells to repair spinal cord injuries in rat // Tissue Cell. 2012. Vol. 44, № 4. P. 205‒213.
  38. Zhang W., Yan Q. et al. Implantation of adult bone marrow-derived mesenchymal stem cells transfected with the neurotrophin-3 gene and pretreated with retinoic acid in completely transected spinal cord // Brain Res. 2010. Vol. 1359. P. 256‒271.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Chelyshev Y.A., Shaymardanova G.F., Muhamedshina Y.O., Nigmetzyanova M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 75562 от 12 апреля 2019 года.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies