Role of the immune response in the pathogenesis of Alzheimer’s disease and possibilities of anti-inflammatory therapy

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In modern scientific society several alternative hypotheses for the formation of Alzheimer’s disease are considered, proposed on the basis of data obtained as a result of research. In almost any of them, the development of an immuno-inflammatory response is discussed as one of the main pathogenic mechanisms of the disease. It was found that the development of neurodegeneration is accompanied by the accumulation of pro-inflammatory cytokines and other markers of inflammation in the peripheral blood and brain tissues. At the same time, the obtained results suggest that the main role in pathogenesis may be played by T-helpers of the Th17 population that can penetrate the blood-brain barrier. In addition, microglia, which is the main immune-presenting component of the central nervous system, and astrocytes, which are capable of excessive production of pro- inflammatory cytokines and regulation of β-amyloid clearance, are considered as key components in these reactions. Based on these data, attempts are being made to develop drugs that have an anti-inflammatory effect and can positively influence the dynamics of the disease. The initial results obtained in some cases demonstrate a certain positive effect, which suggests that there is a therapeutic potential for this type of therapy.

Full Text

Restricted Access

About the authors

Sergey V. Vorobev

Saint-Petersburg State Pediatric Medical University

Email: emelinand@rambler.ru
Russian Federation, 194100, Saint Petersburg, Litovskaya str., 2

Andrey Yu. Emelin

S.M. Kirov Military Medical Academy

Author for correspondence.
Email: emelinand@rambler.ru
ORCID iD: 0000-0001-5801-1480
SPIN-code: 9650-1368
Scopus Author ID: 35773115100
ResearcherId: Ш-8241-2016

Профессор

Кафедра нервных болезней

Russian Federation, 194044, Saint Petersburg, Academician Lebedev str., 6

Raisa N. Kuznetsova

First St. Petersburg state medical University named after academician I.P. Pavlov

Email: emelinand@rambler.ru
Russian Federation, 197022, Saint Petersburg, Leo Tolstoy str., 6-8

Igor V. Kudryavtsev

Institute of Experimental Medicine

Email: emelinand@rambler.ru
Russian Federation, 197376, Saint Petersburg, Academician Pavlov str., 12

References

  1. Литвиненко И.В., Емелин А.Ю., Лобзин В.Ю. и др. Амилоидная гипотеза болезни Альцгеймера: прошлое и настоящее, надежды и разочарования. Неврология, нейропсихиатрия, психосоматика. 2019; 3 (11): 4–10. [Litvinenko I.V., Emelin A.Yu., Lobzin V.Yu. et al. Amyloid hypothesis of Alzheimer’s disease: past and present, hopes and disappointments. Nevrologiya, neyropsikhiatriya, psikhosomatika. 2019; 3 (11): 4–10. (In Russ.)] DOI: 1014412/2074-2711-2019-3-4-10/
  2. Рязанцева М.А., Можаева Г.Н., Казначеева Е.В. Патогенез болезни Альцгеймера и кальциевый гомеостаз. В кн.: Нейродегенеративные заболевания: от генома до целостного организма. В 2 томах. Том 2. Под ред. М.В. Угрюмова. М.: Научный мир. 2014; 163–181. [Ryazantseva M.A., Mozhaeva G.N., Kaznacheeva E.V. Pathogenesis of Alzheimer’s disease and calcium homeostasis. In: Neurodegenerative diseases: from the genome to the whole organism. In 2 volumes. Vol. 2. Ed. M.V. Ugryumov. Moscow: Nauchnyy mir. 2014; 163–181. (In Russ.)]
  3. Зуев В.А. Иммунологическая теория болезни Альцгеймера: факты и гипотезы. Соврем. пробл. науки и образования. 2019; 4: 138. [Zuev V.A. Immunological theory of Alzheimer’s disease: facts and hypotheses. Sovremennye problemy nauki i obrazovaniya. 2019; 4: 138. (In Russ.)] doi: 10.17513/spno.28961.
  4. Bender H., Noyes N., Annis J.L. et al. PrPC Knockdown by liposome-siRNA-peptide complexes (LSPCs) prolongs survival and normal behavior of prion-infected mice immunotolerant to treatment. PLoS One. 2019; 14 (7): e0219995. doi: 10.1371/journal.pone.0219995.
  5. Osorio C., Kanukuntla T., Diaz E. et al. The post-amyloid era in Alzheimer’s disease: Trust your gut feeling. Front. Aging Neurosci. 2019; 11: 143. doi: 10.3389/fnagi.2019.00143.
  6. Franceschi C., Bonafè M., Valensin S. et al. Inflam- maging. An evolutionary perspective on immunosenescence. Ann. NY Acad. Sci. 2000; 908: 244–254.
  7. Cornejo F., von Bernhardi R. Age-dependent changes in the activation and regulation of microglia. Adv. Exp. Med. Biol. 2016; 949: 205–226.
  8. McGuire P.J. Mitochondrial dysfunction and the aging immune system. Biology (Basel). 2019; 8 (2): E26. doi: 10.3390/biology8020026.
  9. Ещенко Н.Д. Биохимия психических и нервных болезней. СПб.: Изд-во С.-Петерб. ун-та. 2004; 200 с. [Eshchenko N.D. Biochemistry of mental and nervous diseases. Saint-Petersburg: Izd-vo S.-Peterb. un-ta. 2004; 200 p. (In Russ.)]
  10. Андросова Л.В., Михайлова Н.М., Зозуля С.А. и др. Маркёры воспаления при болезни Альцгеймера и сосудистой деменции. Ж. неврол. и психиатрии. 2013; 2: 49–53. [Androsova L.V., Mikhaylova N.M., Zozulya S.A. et al. Markers of inflammation in Alzheimer’s disease and vascular dementia. Zhurnal nevrologii i psikhiatrii. 2013; 2: 49–53. (In Russ.)]
  11. Iosif R.E., Ekdahl C.T., Ahlenius H. et al.Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J. Neurosci. 2006; 26 (38): 9703–9712.
  12. Zhang J., Ke K.F., Liu Z. et al. Th17 cell-mediated neuroinflammation is involved in neurodegeneration of aβ1-42-induced Alzheimer’s disease model rats. PLoS One. 2013; 8 (10): 75786. doi: 10.1371/journal.pone.0075786.
  13. La Rosa F., Saresella M., Baglio F. et al. Immune and imaging correlates of mild cognitive impairment conversion to Alzheimer’s disease. Sci. Rep. 2017; 7 (1): 16760. doi: 10.1038/s41598-017-16754-y.
  14. Italiani P., Puxeddu I., Napoletano S. et al. Circulating levels of IL-1 family cytokines and receptors in Alzheimer’s disease: new markers of disease progression? J. Neuroinflammation. 2018; 15 (1): 342. doi: 10.1186/s12974-018-1376-1.
  15. Richartz-Salzburger E., Batra A., Stransky E. et al. Altered lymphocyte distribution in Alzheimer’s disease. J. Psychiatr. Res. 2007; 41 (1–2): 174–178. doi: 10.1016/j.jpsychires.2006.01.010.
  16. Pellicano M., Larbi A., Goldeck D. et al. Immune profiling of Alzheimer patients. J. Neuroimmunol. 2012; 242 (1–2): 52–59. doi: 10.1016/j.jneuroim.2011.11.005.
  17. Kebir H., Kreymborg K., Ifergan I. et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 2007; 13 (10): 1173–1175. doi: 10.1038/nm1651.
  18. Kuchroo V.K., Awasthi A. Emerging new roles of Th17 cells. Eur. J. Immunol. 2012; 42 (9): 2211–2214. doi: 10.1002/eji.201242872.
  19. Sallusto F., Zielinski C.E., Lanzavecchia A. Human Th17 subsets. Eur. J. Immunol. 2012; 42: 2215–2220. doi: 10.1002/eji.201242741.
  20. Browne T.C., McQuillan K., McManus R.M. et al. IFN-γ Production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. J. Immunol. 2013; 190 (5): 2241–2251. doi: 10.4049/jimmunol.1200947.
  21. McManus R.M., Higgins S.C., Mills K.H., Lynch M.A. Respiratory infection promotes T cell infiltration and amyloid-β deposition in APP/PS1 mice. Neurobiol. Aging. 2014; 35 (1): 109–121. doi: 10.1016/j.neurobiolaging.2013.07.025.
  22. Chen J.M., Jiang G.X., Li Q.W. et al. Increased serum levels of interleukin-18, -23 and -17 in Chinese patients with Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2014; 38 (5–6): 321–329. doi: 10.1159/000360606.
  23. Park J.C., Han S.H., Mook-Jung I. Peripheral inflammatory biomarkers in Alzheimer’s disease: a brief review. BMB Rep. 2020; 53 (1): 10–19. doi: 10.5483/BMBRep.2020.53.1.309.
  24. Swardfager W., Lanctot K., Rothenburg L. et al. A meta-analysis of cytokines in Alzheimer’s disease. Biol. Psychiatry. 2010; 68 (10): 930–941. doi: 10.1016/j.biopsych.2010.06.012.
  25. Saresella M., Calabrese E., Marventano I. et al. Increased activity of Th-17 and Th-9 lymphocytes and a skewing of the post-thymic differentiation pathway are seen in Alzheimer’s disease. Brain Behav. Immun. 2011; 25 (3): 539–547. doi: 10.1016/j.bbi.2010.12.004.
  26. Tahmasebinia F., Pourgholaminejad A. The role of Th17 cells in auto-inflammatory neurological disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2017; 79 (pt. B): 408–416. doi: 10.1016/j.pnpbp.2017.07.023.
  27. Oberstein T.J., Taha L., Spitzer P. et al. Imbalance of circulating Th17 and regulatory T cells in Alzheimer’s disease: A case control study. Front. Immunol. 2018; 9: 1213. doi: 10.3389/fimmu.2018.01213.
  28. Cipollini V., Anrather J., Orzi F., Iadecola C. Th17 and cognitive impairment: Possible mechanisms of action. Front. Neuroanat. 2019; 13: 95. doi: 10.3389/fnana.2019.00095.
  29. Wyss-Coray T., Rogers J. Inflammation in Alzheimer disease — a brief review of the basic science and clinical literature. Cold Spring Harb. Perspect. Med. 2012; 2 (1): a006346. doi: 10.1101/cshperspect.a006346.
  30. Wu T., Dejanovic B., Gandham V.D. et al. Complement C3 is activated in human AD brain and is required for neurodegeneration in mouse models of amyloidosis and tauopathy. Cell Rep. 2019; 28 (8): 2111–2123.e6. doi: 10.1016/j.celrep.2019.07.060.
  31. Tejera D., Mercan D., Sanchez-Caro J.M. et al. Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome. EMBO J. 2019; 38 (17): e101064. doi: 10.15252/embj.2018101064.
  32. Heneka M.T., Carson M.J., El Khoury J. et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015; 14 (4): 388–405. doi: 10.1016/S1474-4422(15)70016-5.
  33. Bamberger M.E., Harris M.E., McDonald D.R. et al. A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J. Neurosci. 2003; 23 (7): 2665–2674.
  34. Gaikwad S., Larionov S., Wang Y. et al. Signal regulatory protein-beta 1: a microglial modulator of phagocytosis in Alzheimer’s disease. Am. J. Pathol. 2009; 175 (6): 2528–2539. doi: 10.2353/ajpath.2009.090147.
  35. Montgomery S.L., Mastrangelo M.A., Habib D. et al. Ablation of TNF-RI/RII expression in Alzheimer’s disease mice leads to an unexpected enhancement of pathology: implications for chronic pan-TNFα suppressive therapeutic strategies in the brain. Am. J. Pathol. 2011; 179 (4): 2053–2070. doi: 10.1016/j.ajpath.2011.07.001.
  36. Hickman S.E., Allison E.K., Khoury E.J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J. Neurosci. 2008; 28 (33): 8354–8360. doi: 10.1523/JNEUROSCI.0616-08.2008.
  37. Frost G.R., Li Y.M. The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol. 2017; 7 (12): 170228. doi: 10.1098/rsob.170228.
  38. Boespflug E.L., Simon M.J., Leonard E. et al. Targeted assessment of enlargement of the perivascular space in Alzheimer’s disease and vascular dementia subtypes implicates astroglial involvement specific to Alzheimer’s disease. J. Alzheimers Dis. 2018; 66 (4): 1587–1597. doi: 10.3233/JAD-180367.
  39. Kamphuis W., Mamber C., Moeton M. et al. GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PLoS ONE. 2012; 7 (8): 42823. DOI: 10. 1371/journal.pone.0042823.
  40. Guzman-Martinez L., Maccioni R.B., Andrade V. et al. Neuroinflammation as a common feature of neurodegenerative disorders. Front. Pharmacol. 2019; 10: 1008. doi: 10.3389/fphar.2019.01008.
  41. Huynh D.P., Vinters H.V., Ho D.H. et al. Neuronal expression and intracellular localization of presenilins in normal and Alzheimer disease brains. J. Neuropathol. Exp. Neurol. 1997; 56: 1009–1017. doi: 10.1097/00005072-199709000-00006.
  42. LeBlanc A.C., Papadopoulos M., Be´lair C. et al. Processing of amyloid precursor protein in human primary neuron and astrocyte cultures. J. Neurochem. 1997; 68 (3): 1183–1190. doi: 10.1046/j.1471-4159.1997.68031183.x.
  43. Leuba G., Wernli G., Vernay A. Neuronal and nonneuronal quantitative BACE immunocytochemical expression in the entorhinohippocampal and frontal regions in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2005; 19: 171–183. doi: 10.1159/000083496.
  44. Simon M.J., Iliff J.J. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim. Biophys. Acta. 2016; 1862 (3): 442–451. doi: 10.1016/j.bbadis.2015.10.014.
  45. Kashon M.L., Ross G.W., O’Callaghan J.P. et al. Associations of cortical astrogliosis with cognitive performance and dementia status. J. Alzheimer’s Dis. 2004; 6 (6): 595–604. doi: 10.3233/JAD-2004-6604.
  46. Schöll M., Carter S.F., Westman E. et al. Early astrocytosis in autosomal dominant Alzheimer’s disease measured in vivo by multi-tracer positron emission tomography. Sci. Rep. 2015; 5: 16404. doi: 10.1038/srep16404.
  47. Балашов А.М. Нестероидные противовоспалительные средства в лечении болезни Альцгеймера. Ж. неврол. и психиатрии им. С.С. Корсакова. 2005; 105 (9): 71–77. [Balashov A.M. Non-steroidal anti-inflammatory drugs in the treatment of Alzheimer’s disease. Zhurn. nevrologii i psikhiatrii im. S.S. Korsakova. 2005; 105 (9): 71–77. (In Russ.)]
  48. Yip A.G., Green R.C., Huyck M. et al. Nonsteroidal anti-inflammatory drug use and Alzheimer’s disease risk: the MIRAGE Study. BMC Geriatr. 2005; 5: 2.
  49. Ali M.M., Ghouri R.G., Ans A.H. et al. Recommendations for anti-inflammatory treatments in Alzheimer’s disease: A comprehensive review of the literature. Cureus. 2019; 11 (5): 4620. doi: 10.7759/cureus.4620.
  50. Tobinick E.L., Gross H. Rapid improvement in verbal fluency and aphasia following perispinal etanercept in Alzheimer’s disease. BMC Neurol. 2008; 8: 27. DOI: 10.1186/ 1471-2377-8-27.
  51. Ross J., Sharma S., Winston J. et al. CHF5074 reduces biomarkers of neuroinflammation in patients with mild cognitive impairment: a 12-week, double-blind, placebo-controlled study. Curr. Alzheimer Res. 2013; 10 (7): 742–753.
  52. Boyd T.D., Bennett S.P., Mori T. et al. GM-CSF upregulated in rheumatoid arthritis reverses cognitive impairment and amyloidosis in Alzheimer mice. J. Alzheimers Dis. 2010; 21 (2): 507–518. doi: 10.3233/JAD-2010-091471.
  53. Cai Z., Yan Y., Wang Y. Minocycline alleviates beta-amyloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder. Clin. Interv. Aging. 2013; 8: 1089–1095. doi: 10.2147/CIA.S46536.
  54. Howard R., Zubko O., Bradley R et al. Minocycline at 2 different dosages vs placebo for patients with mild Alzheimer disease: A randomized clinical trial. JAMA Neurol. 2019; 77 (2): 164–174. doi: 10.1001/jamaneurol.2019.3762.
  55. Соловьёва И.А., Демко И.В., Собко Е.А. и др. Роль р38 МАРК в развитии иммунного воспаления. Бюл. физ. и пат. дых. 2013; 49: 105–113. [Solovʹeva I.A., Demko I.V., Sobko E.A. et al. The role of P38 MARK in the development of immune inflammation. Byul. fiz. i pat. dykh. 2013; 49: 105–113. (In Russ.)]
  56. Alam J., Blackburn K., Patrick D. Neflamapimod: Clinical phase 2b-ready oral small molecule inhibitor of p38α to reverse synaptic dysfunction in early Alzheimer’s disease. J. Prev. Alzheimers Dis. 2017; 4 (4): 273–278. doi: 10.14283/jpad.2017.41.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure: 1. Diagram of the main links in the pathogenesis of Alzheimer's disease. A number of events provoked by the development of an immune inflammatory response are indicated. β-A 42 - pathological insoluble protein β-amyloid

Download (218KB)
3. Figure: 2. The main effector endpoints of anti-inflammatory drugs investigated in the treatment of Alzheimer's disease; COX - cyclooxygenase; NSAIDs - non-steroidal anti-inflammatory drugs; MAPK - mitogen-activated protein kinases

Download (229KB)

Copyright (c) 2021 Vorobev S.V., Emelin A.Y., Kuznetsova R.N., Kudryavtsev I.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 75562 от 12 апреля 2019 года.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies