Study of the functioning of mirror neurons in normal conditions, in neurological and psychiatric diseases: a systematic review of the literature

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The mirror neuron system is a fundamental brain system of the brain that provides the ability to understand the actions of others and plays a key role in motor learning and empathy. In this review, we have thoroughly examined the internal and external factors that influence the functioning of the mirror neuron system. Issues such as difficulties in interpreting the mu rhythm and its relationship to theory of mind, which are particularly salient when analysing the mirror neuron system in the context of mental illness, have been identified. The role of the mirror neuron system in the formation of various mental disorders and neurological diseases has been considered. Additionally, a promising direction for future research is highlighted — the study of the mirror neuron system in the context of Parkinson's disease, focusing on the peculiarities of the functioning of the dopaminergic system of the mirror neuron system under normal conditions and in the presence of pathology. Prospective directions for further research are suggested, including the analysis of the mu-rhythm, the role of mentalization, studying the mirror neuron system in mental and neurological diseases.

Full Text

Restricted Access

About the authors

Aynur A. Ragimova

Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University; Research Center of Neurology

Email: ragimovaasia@gmail.com
ORCID iD: 0000-0002-4370-4249
SPIN-code: 8489-7627

MD, Cand. Sci. (Med.), Researcher, psychiatrist, psychotherapist

Russian Federation, Moscow; Moscow

Gleb S. Perevoznyuk

Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University

Email: gotlibb@gmail.com
ORCID iD: 0000-0002-7521-2767
SPIN-code: 3777-9849

MD, Life Sciences Master

Russian Federation, Moscow

Beatrice A. Volel

First Moscow State Medical University named after I.M. Sechenov

Email: beatrice.volel@gmail.com
ORCID iD: 0000-0003-1667-5355
SPIN-code: 1120-7630

MD, Dr. Sci. (Med.), Prof., Director, N.V. Sklifosovsky Institute of Clinical Medicine

Russian Federation, Moscow

Dmitry S. Petelin

First Moscow State Medical University named after I.M. Sechenov

Author for correspondence.
Email: petelinhome1@yandex.ru
ORCID iD: 0000-0002-2228-6316
SPIN-code: 4426-2811

MD, Cand. Sci. (Med.), Assistant, Depart. of Psychiatry and Psychososmatics, N.V. Sklifosovsky Institute of Clinical Medicine

Russian Federation, Moscow

Daria S. Ponomareva

Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University

Email: dsponomareva_1@edu.hse.ru
ORCID iD: 0009-0004-3871-9763

Master Student

Russian Federation, Moscow

Mikhail I. Salamatin

Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University

Email: mihail.salamatin@gmail.com
ORCID iD: 0009-0004-1063-5509

Master Student

Russian Federation, Moscow

Artyom A. Batov

Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University; First Moscow State Medical University named after I.M. Sechenov

Email: batov3003t@gmail.com
ORCID iD: 0000-0002-1153-9947

Specialist Student

Russian Federation, Moscow; Moscow

Matteo Feurra

Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University

Email: mfeurra@hse.ru
ORCID iD: 0000-0003-0934-6764

Assoc. Prof., Institute for Cognitive Neuroscience

Russian Federation, Moscow

References

  1. Häusser LF. Empathie und Spiegelneurone. Praxis der Kinderpsychologie und Kinderpsychiatrie. 2012;61(5):322–335. (In German.) doi: 10.13109/prkk.2012.61.5.322
  2. Kosonogov V. Mirror neurons: A brief scientific review. Rostov-on-Don: Antey; 2009. 22 p. (In Russ.) EDN: QKSJRJ
  3. Lebedeva NN, Zufman AI, Maltsev VY. The brain's mirror neuron system: A key to learning, personality formation, and understanding others' consciousness. Progress in Physiological Science. 2017;48(4):16–28. (In Russ.) EDN: ZMRGRH
  4. Bushov YV, Ushakov V, Svetlik MV, et al. Activity of mirror neurons in man in the observation, pronunciation and mental pronunciation of words. Procedia Computer Science. 2020;169:100–109. doi: 10.1016/j.procs.2020.02.121
  5. Bushov YV, Ushakov V, Svetlik MV, et al. The role of mirror neurons in the interpretation of actions and intentions. Tomsk State University Journal of Biology. 2021;56:86–107. (In Russ.) EDN: FCQOHZ doi: 10.17223/19988591/56/4
  6. Skryabina AA, Bushov YV. Mirror neurons in the evol ution of language and in the formation of bilingualis. Psychophysiology News. 2022;2:12–24. (In Russ.) EDN: KXOEDG doi: 10.34985/c6091-9005-0623-t
  7. Iacoboni M. Imitation, empathy, and mirror neurons. Annu Rev Psychol. 2009;60:653–670. doi: 10.1146/annurev.psych.60.110707.163604
  8. Di Pellegrino G, Fadiga L, Fogassi L, et al. Understanding motor events: A neurophysiological study. Experimental Brain Research. 1992;91(1):176–180. doi: 10.1007/bf00230027
  9. Ferrari PF, Gallese V, Rizzolatti G, et al. Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. European Journal of Neuroscience. 2003;17(8):1703–1714. doi: 10.1046/j.1460-9568.2003.02601.x
  10. Bazyan AS. Mirror neurons, their physiological role, features of functioning, and an emotionally rich cognitive map of the brain. Progress In Physiological Science. 2019;50(2):42–62. (In Russ.) EDN: ZDMARV doi: 10.1134/s0301179819020061
  11. Gallese V. Mirror neurons and the social nature of language: The neural exploitation hypothesis. Soc Neurosci. 2008;3(3–4):317–333. doi: 10.1080/17470910701563608.
  12. Rizzolatti G, Fadiga L, Matelli M, et al. Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res. 1996;111(2):246–252. doi: 10.1007/bf00227301
  13. Fogassi L, Ferrari PF, Gesierich B, et al. Parietal lobe: From action organization to intention understanding. Science. 2005;308(5722):662–667. doi: 10.1126/science.1106138
  14. Arbib MA, Billard A, Iacoboni M, et al. Synthetic brain imaging: Grasping, mirror neurons and imitation. Neural Netw. 2000;13(8–9):975–997. doi: 10.1016/s0893-6080(00)00070-8
  15. Fox NA, Bakermans-Kranenburg MJ, Yoo KH, et al. Assessing human mirror activity with EEG mu rhythm: A meta-analysis. Psychol Bull. 2016;142(3):291–313. doi: 10.1037/bul0000031
  16. Makhin SA. The system of "mirror neurons": current achievements and prospects of EEG-research. Scientific notes of Vernadsky VI. Tauride National University. Series: biology, chemistry. 2012;25(1):142–146. (In Russ.) EDN: VEBCGP
  17. Ragimova AA, Petelin DS, Zakharova NV, et al. The use of transcranial magnetic stimulation in psychiatric and psychoneurological practice: a teaching manual. Moscow: First Moscow State Medical University named after IM Sechenov (Sechenov University), Ministry of Health of the Russian Federation; 2022. 150 р. (In Russ.)
  18. Feurra M, Blagovechtchenski E, Nikulin VV, et al. State-dependent effects of transcranial oscillatory currents on the motor system during action observation. Scientific Reports. 2019;9(1):12858. doi: 10.1038/s41598-019-49166-1
  19. Kayda AI, Eismont EV. Experimental methods of studying the human brain's mirror neuron system. In: II Interdisciplinary Scientific and Practical Conference of Young Scientists on Promising Directions in the Development of Modern Science “Academician Vernadsky”. 2016:30–32. (In Russ.) EDN: ZRVSUD
  20. Kemmerer D, Rudrauf D, Manzel K, et al. Behavioral patterns and lesion sites associated with impaired processing of lexical and conceptual knowledge of actions. Cortex. 2012;48(7):826–848. doi: 10.1016/j.cortex.2010.11.001
  21. Gastaut H, Bert J. EEG changes during cinematographic presentation (Moving picture activation of the EEG). Electroencephalography and Clinical Neurophysiology. 1954;6(3):433–444. doi: 10.1016/0013-4694(54)90058-9
  22. Tranel D, Kemmerer D, Adolphs R, et al. Neural correlates of conceptual knowledge for actions. Cogn Neuropsychol. 2003;20(3–6):409–432. doi: 10.1080/02643290244000248
  23. Tarhan L, Watson CE, Buxbaum LJ. Shared and distinct neuroanatomic regions critical for tool-related action production and recognition: Evidence from 131 left-hemisphere stroke patients. J Cogn Neurosci. 2015;27(12):2491–2511. doi: 10.1162/jocn_a_00876
  24. Rossini PM. Corticospinal excitability modulation to hand muscles during movement imagery. Cerebral Cortex. 1999;9(2):161–167. doi: 10.1093/cercor/9.2.161
  25. Barbieri C, De Renzi E. The executive and ideational components of Apraxia. Cortex. 1988;24(4):535–543. doi: 10.1016/s0010-9452(88)80047-9
  26. Buccino G, Binkofski F, Riggio L. The mirror neuron system and action recognition. Brain Lang. 2004;89(2):370–376. doi: 10.1016/s0093-934x(03)00356-0
  27. Takahashi H, Shibuya T, Kato M, et al. Enhanced activation in the extrastriate body area by goal-directed actions. Psychiatry Clin Neurosci. 2008;62(2):214–219. doi: 10.1111/j.1440-1819.2008.01757.x
  28. Van Overwalle F, Baetens K. Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. Neuroimage. 2009;48(3):564–584. doi: 10.1016/j.neuroimage.2009.06.009
  29. Brunsdon VE, Bradford EE, Smith L, et al. Short-term physical training enhances mirror system activation to action observation. Soc Neurosci. 2019;15(1):98–107. doi: 10.1080/17470919.2019.1660708
  30. Barchiesi G, Cattaneo L. Early and late motor responses to action observation. Soc Cogn Affect Neurosci. 2012;8(6):711–719. doi: 10.1093/scan/nss049
  31. Catmur C, Thompson E, Bairaktari O, et al. Sensorimotor training alters action understanding. Cognition. 2018;171:10–14. doi: 10.1016/j.cognition.2017.10.024
  32. Bianco G, Feurra M, Fadiga L, et al. Bi-hemispheric effects on corticospinal excitability induced by repeated sessions of imagery versus observation of actions. Restor Neurol Neurosci. 2012;30(6):481–489. doi: 10.3233/rnn-2012-120241
  33. Catmur C, Mars RB, Rushworth MF, et al. Making mirrors: Premotor cortex stimulation enhances mirror and counter-mirror motor facilitation. J Cogn Neurosci. 2011;23(9):2352–2362. doi: 10.1162/jocn.2010.21590
  34. Taschereau-Dumouchel V, Hétu S, Michon P, et al. BDNF Val66MET polymorphism influences visuomotor associative learning and the sensitivity to action observation. Sci Rep. 2016;6(1):34907. doi: 10.1038/srep34907
  35. Errante A, Fogassi L. Activation of cerebellum and basal ganglia during the observation and execution of manipulative actions. Scientific Reports. 2020;10(1):12008. doi: 10.1038/s41598-020-68928-w
  36. Nieto-Doval K, Ragimova AA, Feurra M. The influence of visual presentation of hand finger movements on motor response induced by transcranial magnetic stimulation. Zhurnal Vysshei Nervnoi Deyatelnosti Imeni IP Pavlova. 2023;73(3):334–347. (In Russ.) EDN: TTOQDZ doi: 10.31857/S0044467723030115
  37. Krol M, Jellema T. Sensorimotor anticipation of others’ actions in real-world and video settings: Modulation by level of engagement? Soc Neurosci. 2022;17(3):293–304. doi: 10.1080/17470919.2022.2083229
  38. Pineda JO, Oberman LM. What goads cigarette smokers to smoke? Neural adaptation and the mirror neuron system. Brain Res. 2006;1121(1):128–135. doi: 10.1016/j.brainres.2006.08.128
  39. Heyes C. Empathy is not in our genes. Neurosci Biobehav Rev. 2018;95:499–507. doi: 10.1016/j.neubiorev.2018.11.001
  40. Meza-Concha N, Arancibia M, Salas F, et al. Towards a neurobiological understanding of alexithymia. Medwave. 2017;17(4):e6960. doi: 10.5867/medwave.2017.04.6960
  41. Ripoll LH, Snyder R, Steele H, Siever LJ. The neurobiology of empathy in borderline personality disorder. Curr Psychiatry Rep. 2013;15(3):344. doi: 10.1007/s11920-012-0344-1
  42. Guessoum SB, Strat YL, Dubertret C, et al. A transnosographic approach of negative symptoms pathophysiology in schizophrenia and depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2020;99:109862. doi: 10.1016/j.pnpbp.2020.109862
  43. Smith DJ, Whitham EA, Ghaemi SN. Bipolar disorder. Handb Clin Neurol. 2012;106:251–263. doi: 10.1016/b978-0-444-52002-9.00015-2
  44. Lebedeva NN, Karimova ED, Burkutbaev SE, et al. Research methods of mirror neurons in patients with affective disorders. In: Proceedings of the All-Russian school-seminar “Computerized diagnostic methods in biology and medicine – 2018”. Saratov, 2018 Oct 01. Saratov National Research State University named after NG Chernyshevsky. 2018:114–117. (In Russ.) EDN: VKZIQE
  45. Andrews SC, Enticott PG, Hoy KE, et al. Reduced mu suppression and altered motor resonance in euthymic bipolar disorder: Evidence for a dysfunctional mirror system? Soc Neurosci. 2015;11(1):60–71. doi: 10.1080/17470919.2015.1029140
  46. Basavaraju R, Mehta UM, Pascual-Leone Á, et al. Elevated mirror neuron system activity in bipolar mania: Evidence from a transcranial magnetic stimulation study. Bipolar Disord. 2018;21(3):259–269. doi: 10.1111/bdi.12723
  47. Canali P, Casarotto S, Rosanova M, et al. Abnormal brain oscillations persist after recovery from bipolar depression. Eur Psychiatry. 2017;41:10–15. doi: 10.1016/j.eurpsy.2016.10.005
  48. Cao K, Ma M, Wang C, et al. TMS-EEG: An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology. 2021;197:108574. doi: 10.1016/j.neuropharm.2021.108574
  49. Chrobak AA, Rybakowski J, Abramowicz M, et al. Vergence eye movements in bipolar disorder. Psychiatr Pol. 2020;54(3):467–485. doi: 10.12740/pp/onlinefirst/105229
  50. Shmukler AB. Schizophrenia: A separate nosological unit or a group of diseases? Social and Clinical Psychiatry. 2021;31(4):103–107. (In Russ.) EDN: CQGBMJ
  51. Lee JS, Chun JW, Yoon SD, et al. Involvement of the mirror neuron system in blunted affect in schizophrenia. Schizophr Res. 2014;152(1):268–274. doi: 10.1016/j.schres.2013.10.043
  52. Saito Y, Kubicki M, Koerte I, et al. Impaired white matter connectivity between regions containing mirror neurons, and relationship to negative symptoms and social cognition, in patients with first-episode schizophrenia. Brain Imaging Behav. 2018;12(1):229–237. doi: 10.1007/s11682-017-9685-z
  53. Mitra S, Nizamie SH, Goyal N, et al. Event related desynchronisation of mu-wave over right sensorimotor cortex at baseline may predict subsequent response to antipsychotics in Schizophrenia. Asian J Psychiatr. 2015;14:19–21. doi: 10.1016/j.ajp.2015.01.013
  54. Horan WP, Pineda JA, Wynn JK, et al. Some markers of mirroring appear intact in schizophrenia: Evidence from mu suppression. Cogn Affect Behav Neurosci. 2014;14(3):1049–1060. doi: 10.3758/s13415-013-0245-8
  55. Brown EB, Gonzalez-Liencres C, Taş C, et al. Reward modulates the mirror neuron system in schizophrenia: A study into the mu rhythm suppression, empathy, and mental state attribution. Soc Neurosci. 2016;11(2):175–186. doi: 10.1080/17470919.2015.1053982
  56. Jalal B, Ramachandran VS. “I feel your disgust and relief”: Can the action understanding system (mirror neuron system) be recruited to induce disgust and relief from contamination vicariously, in individuals with obsessive-compulsive disorder symptoms? Neurocase. 2017;23(1):31–35. doi: 10.1080/13554794.2017.1279638
  57. Khalil R, Tindle R, Boraud T, et al. Social decision making in autism: On the impact of mirror neurons, motor control, and imitative behaviors. CNS Neurosci Ther. 2018;24(8):669–676. doi: 10.1111/cns.13001
  58. Bibicheva AA, Moskvitina IE, Rykova MS, Zubkova TD. Development of empathy in children with autism spectrum disorder on the example of mirror neurons. Ratio et Natura. 2022;2:28. (In Russ.) EDN: HLAQQD
  59. Oberman LM, Hubbard EM, McCleery JP, et al. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain Res Cogn Brain Res. 2005;24(2):190–198. doi: 10.1016/j.cogbrainres.2005.01.014
  60. Enticott PG, Kennedy HA, Rinehart N, et al. Mirror neuron activity associated with social impairments but not age in autism spectrum disorder. Biol Psychiatry. 2012;71(5):427–433. doi: 10.1016/j.biopsych.2011.09.001
  61. Enticott PG, Kennedy HA, Rinehart N, et al. Interpersonal motor resonance in autism spectrum disorder: Evidence against a global “mirror system” deficit. Front Hum Neurosci. 2013;7:218. doi: 10.3389/fnhum.2013.00218
  62. Heyes C, Catmur C. What happened to mirror neurons? Perspect Psychol Sci. 2022;17(1):153–168. doi: 10.1177/1745691621990638
  63. Chan MM, Han YM. Differential mirror neuron system (MNS) activation during action observation with and without social-emotional components in autism: A meta-analysis of neuroimaging studies. Mol Autism. 2020;11(1):72. doi: 10.1186/s13229-020-00374-x
  64. Leichsenring F, Heim N, Leweke F, et al. Borderline personality disorder: A review. JAMA. 2023;329(8):670–679. doi: 10.1001/jama.2023.0589
  65. Sosic-Vasic Z, Eberhardt J, Bosch J, et al. Mirror neuron activations in encoding of psychic pain in borderline personality disorder. NeuroImage: Clinical. 2019;22:101737. doi: 10.1016/j.nicl.2019.101737
  66. Minzenberg M, Fan J, New AS, et al. Fronto-limbic dysfunction in response to facial emotion in borderline personality disorder: An event-related fMRI study. Psychiatry Res. 2007;155(3):231–243. doi: 10.1016/j.pscychresns.2007.03.006
  67. Frith CD. The social brain? Philos Trans R Soc Lond B Biol Sci. 2007;362(1480):671–678. doi: 10.1098/rstb.2006.2003
  68. Singer T, Seymour B, O’Doherty JP, et al. Empathy for pain involves the affective but not sensory components of pain. Science. 2004;303(5661):1157–1162. doi: 10.1126/science.1093535
  69. Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century. Stroke. 2013;44(7):2064–2089. doi: 10.1161/str.0b013e318296aeca
  70. Heilman K., Velnstein E. Clinical neuropsychology. New York: Oxford University Press; 1979. 644 p. [cited 2023 April 05] Available from: https://archive.org/details/clinicalneuropsy00heil
  71. Buxbaum LJ, Kyle KM, Menon R. On beyond mirror neurons: Internal representations subserving imitation and recognition of skilled object-related actions in humans. Brain Res Cogn Brain Res. 2005;25(1):226–239. doi: 10.1016/j.cogbrainres.2005.05.014
  72. Kalénine S, Buxbaum LJ, Coslett HB. Critical brain regions for action recognition: Lesion symptom mapping in left hemisphere stroke. Brain. 2010;133(11):3269–3280. doi: 10.1093/brain/awq210
  73. Binder EF, Dovern A, Hesse MD, et al. Lesion evidence for a human mirror neuron system. Cortex. 2017;90:125–137. doi: 10.1016/j.cortex.2017.02.008
  74. Eggermont L, Swaab DF, Hol EM, Scherder E. Observation of hand movements by older persons with dementia: Effects on cognition. Dement Geriatr Cogn Disord. 2009;27(4):366–374. doi: 10.1159/000209311
  75. Marco-Garcia S, Ferrer-Quintero M, Usall J, et al. Facial emotion recognition in neurological disorders: A narrative review. Reconocimiento facial de emociones en trastornos neurologicos: Una revision narrativa. Rev Neurol. 2019;69(5):207–219. doi: 10.33588/rn.6905.2019047
  76. De Stefani E, Nicolini Y, Belluardo M, et al. Congenital facial palsy and emotion processing: The case of Moebius syndrome. Genes Brain Behav. 2019;18(1):e12548. doi: 10.1111/gbb.12548
  77. Nicolini Y, Manini B, De Stefani E, et al. Autonomic responses to emotional stimuli in children affected by facial palsy: The case of Moebius syndrome. Neural Plast. 2019;2019: 7253768. doi: 10.1155/2019/7253768
  78. Plata-Bello J. The study of action observation therapy in neurological diseases: A few technical considerations. InTech eBooks. 2017. doi: 10.5772/67651
  79. Kim K. Action observation for upper limb function after stroke: evidence-based review of randomized controlled trials. J Phys Ther Sci. 2015;27(10):3315–3317. doi: 10.1589/jpts.27.3315
  80. Sale P, Ceravolo MG, Franceschini M. Action observation therapy in the subacute phase promotes dexterity recovery in right-hemisphere stroke patients. Biomed Res Int. 2014;2014:457538. doi: 10.1155/2014/457538
  81. Celnik P, Webster B, Glasser DM, Cohen LG. Effects of action observation on physical training after stroke. Stroke. 2008;39(6):1814–1820. doi: 10.1161/strokeaha.107.508184
  82. Bhasin A, Srivastava MP, Kumaran S, et al. Neural interface of mirror therapy in chronic stroke patients: A functional magnetic resonance imaging study. Neurol India. 2012;60(6):570. doi: 10.4103/0028-3886.105188
  83. Michielsen ME, Selles RW, Van Der Geest JN, et al. Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients. Neurorehabil Neural Repair. 2010;25(3):223–233. doi: 10.1177/1545968310385127
  84. Jaywant A, Ellis TD, Roy SH, et al. Randomized controlled trial of a Home-Based Action Observation intervention to improve walking in Parkinson disease. Arch Phys Med Rehabil. 2016;97(5):665–673. doi: 10.1016/j.apmr.2015.12.029
  85. Pelosin E, Avanzino L, Bove M, et al. Action observation improves freezing of GAIT in patients with Parkinson’s disease. Neurorehabil Neural Repair. 2010;24(8):746–752. doi: 10.1177/1545968310368685
  86. Pelosin E, Bove M, Ruggeri P, et al. Reduction of bradykinesia of finger movements by a single session of action observation in Parkinson disease. Neurorehabil Neural Repair. 2013;27(6):552–560. doi: 10.1177/1545968312471905
  87. Bek J, Gowen E, Vogt S, et al. Observation and imitation of object-directed hand movements in Parkinson’s disease. Sci Rep. 2023;13(1):18749. doi: 10.1038/s41598-023-42705-x
  88. Buccino G, Arisi D, Gough PM, et al. Improving upper limb motor functions through action observation treatment: A pilot study in children with cerebral palsy. Dev Med Child Neurol. 2012;54(9):822–828. doi: 10.1111/j.1469-8749.2012.04334.x
  89. Tekkuş B, Mutluay F. Effect of community-based group exercises combined with action observation on physical and cognitive performance in older adults during the COVID-19 pandemic: A randomized controlled trial. PLoS One. 2023;18(12):e0295057. doi: 10.1371/journal.pone.0295057
  90. Shaker H, Fahmy EM, Honin A, Shaheen S. Effect of mirror therapy on hand functions in Egyptian chronic stroke patients. The Egyptian Journal of Neurology Psychiatry and Neurosurgery. 2020;56(1):96. doi: 10.1186/s41983-020-00226-8
  91. Thieme H, Morkisch N, Mehrholz J, et al. Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev. 2018;7(7):CD008449. doi: 10.1002/14651858.cd008449.pub3
  92. Ramachandran VS, Rogers-Ramachandran D. Synaesthesia in phantom limbs induced with mirrors. Proc Biol Sci. 1996;263(1369):377–386. doi: 10.1098/rspb.1996.0058
  93. Hobson H, Bishop DV. The interpretation of mu suppression as an index of mirror neuron activity: Past, present and future. R Soc Open Sci. 2017;4(3):160662. doi: 10.1098/rsos.160662

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Literature selection system.

Download (254KB)
3. Fig. 2. Prevalence of year of publication of articles.

Download (147KB)
4. Fig. 3. Frequency of occurrence of the most common words in English literature.

Download (188KB)
5. Fig. 4. Frequency of occurrence of the most common words in Russian-language literature (some of the abstracts of Russian-language articles were given in English).

Download (216KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 75562 от 12 апреля 2019 года.