INCLUSION OF RADACHLORIN PHOTOSENSITIZER INTO POLYMERIC MICROPARTICLES AS A PROMISING APPROACH TO IMPROVE ITS EFFICIENCY IN PHOTODYNAMIC THERAPY


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The widespread use of photodynamic therapy as a method for treating oncological diseases is associated with its high efficiency and fewer side effects. The development of methods for the inclusion of photosensitizers into polymeric microparticles as delivery systems makes it possible to increase the accumulation of such particles by tumor cells and to reduce the manifestation of systemic undesirable effects. Based on a biocompatible copolymer poly(lactic-co-glycolic acid) microparticles with the inclusion of the photosensitizer radachlorin, perfluorodecalin, and magnetic nanoparticles were obtained by the double emulsion method. It is shown that exposure of the obtained microparticles to light radiation used in photodynamic therapy is accompanied by the formation of singlet oxygen, intensified by the presence of perfluorodecalin and magnetic nanoparticles in the polymer matrix. The research results make it possible to consider the obtained microparticles as a depot of radachlorin for local use in photodynamic therapy of tumors.

Full Text

Restricted Access

About the authors

A. M Miroshkina

I.M. Sechenov First Moscow State Medical University

Email: asyamir@mail.ru
Post-graduate Student Moscow, Russia

S. P Krechetov

Moscow Institute of Physics and Technology (State University)

Ph.D. (Med.) Moscow region, Dolgoprudny, Russia

N. L Solovyeva

I.M. Sechenov First Moscow State Medical University

Ph.D. (Pharm.), Associate Professor Moscow, Russia

I. I Krasnyuk

I.M. Sechenov First Moscow State Medical University

Dr.Sc. (Pharm.), Professor Moscow, Russia

References

  1. Филоненко Е.В, Серова Л.Г. Фотодинамическая терапия в клинической практике. Biomedical Photonics. 2016; 5(2): 26-37.
  2. Гамаюнов С.В., Шахова Н.М., Денисенко А.Н. и др. Фотодинамическая терапия - преимущества новой методики и особенности организации службы. ТМЖ. 2014; 2: 56.
  3. Allison R.R., Downie G.H, Cuenca R., et al. Photosensitizers in clinical PDT. Photodiagnosis and Photodynamic Therapy. 2004; 27: 42.
  4. Zhou L., Wang H., Li Y. Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance. Theranostics. 2018; 8(4): 1059-1074.
  5. Kalyane D., Raval N., Maheshwari R., Tambe V., Kalia K., Tekade R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. 2019; 98: 1252-1276.
  6. Чан Тхи Хай Иен, Раменская Г.В., Оборотова Н.А. Фотосенсибилизаторы хлоринового ряда в ФДТ опухолей. Российский биотерапевтический журнал. 2009; 8(4): 95-104.
  7. Privalov V.A., Lappa A.V., Kochneva E.V. Five years’ experience of photodynamic therapy with new chlorin photosensitizer. Proc. SPIE. 2005; 5863: 186-198.
  8. Vargas F., Diaz Y., Yartsev V., Marcano A., Lappa A. Photophysical properties of novel PDT photosensitizer Radachlorin in different media.Ciencia. 2004; 12:70-77.
  9. Douillard S., Olivier D., Patrice T. In vitro and in vivo evaluation of Radachlorin® sensitizer for photodynamic therapy. Photochem. Photobiol. Sci. 2009; 8: 405-413.
  10. Решетников А.В. Фотосенсибилизаторы в современной клинической практике (обзор). Материалы научно-практической конференции оториноларингологов ЦФО РФ «Лазерные технологии в оториноларингологии» / Под ред. В.Г. Зенгера и А.Н. Наседкина. Тула. 2007.
  11. Темнов А.А., Склифас А.Н., Кукушкин Н.И. и др. Влияние триблоксополимеров полиоксиэтилена-полиоксипропилена на степень загрузки в мезенхимальные стволовые клетки микрочастиц на основе сополимеров молочной и гликолевой кислот, содержащих хлорин е{6} и бромистый этидий. Биофизика. 2019; 64(2): 307-315.
  12. Lei Shi, Xiuli Wang, Feng Zhao, et al. In vitro evaluation of 5-aminolevulinic acid (ALA) loaded PLGA nanoparticles. International Journal of Nanomedicine. 2013: 2669-2776.
  13. Miyoshi N., Tomita G. Production and reaction of singlet oxygen in aqueous micellar solutions using pyrene as photosensitizer. Zeitschriftfür Naturforschung B. 1978; 33(6): 622-627.
  14. Sahai D., Lo J.L., Hagen I.K., Bergstrom L.et al. Metabolically convertible lipophilic derivatives of pH-sensitive amphipathic photo sensitizers. Photochem. Photobiol. 1993. 58(6): 803-808.
  15. Vermathen M., Marzorati M., Vermathen P., Bigler P. pH-dependent distribution of chlorin e6 derivatives across phospholipid bilayers probed by NMR spectroscopy. Langmuir 2010; 26(13): 11085-11094.
  16. Zheng Wang, Fan Zhang, Dan Shao, et al. Nanobullets Combine Photodynamic Therapy and Magnetic Hyperthermia to Potentiate Synergetic Anti-Metastatic Immunotherapy. Adv. Sci. 2019; 1901690: 1-10.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies