INCLUSION OF RADACHLORIN PHOTOSENSITIZER INTO POLYMERIC MICROPARTICLES AS A PROMISING APPROACH TO IMPROVE ITS EFFICIENCY IN PHOTODYNAMIC THERAPY


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The widespread use of photodynamic therapy as a method for treating oncological diseases is associated with its high efficiency and fewer side effects. The development of methods for the inclusion of photosensitizers into polymeric microparticles as delivery systems makes it possible to increase the accumulation of such particles by tumor cells and to reduce the manifestation of systemic undesirable effects. Based on a biocompatible copolymer poly(lactic-co-glycolic acid) microparticles with the inclusion of the photosensitizer radachlorin, perfluorodecalin, and magnetic nanoparticles were obtained by the double emulsion method. It is shown that exposure of the obtained microparticles to light radiation used in photodynamic therapy is accompanied by the formation of singlet oxygen, intensified by the presence of perfluorodecalin and magnetic nanoparticles in the polymer matrix. The research results make it possible to consider the obtained microparticles as a depot of radachlorin for local use in photodynamic therapy of tumors.

全文:

受限制的访问

作者简介

A. Miroshkina

I.M. Sechenov First Moscow State Medical University

Email: asyamir@mail.ru
Post-graduate Student Moscow, Russia

S. Krechetov

Moscow Institute of Physics and Technology (State University)

Ph.D. (Med.) Moscow region, Dolgoprudny, Russia

N. Solovyeva

I.M. Sechenov First Moscow State Medical University

Ph.D. (Pharm.), Associate Professor Moscow, Russia

I. Krasnyuk

I.M. Sechenov First Moscow State Medical University

Dr.Sc. (Pharm.), Professor Moscow, Russia

参考

  1. Филоненко Е.В, Серова Л.Г. Фотодинамическая терапия в клинической практике. Biomedical Photonics. 2016; 5(2): 26-37.
  2. Гамаюнов С.В., Шахова Н.М., Денисенко А.Н. и др. Фотодинамическая терапия - преимущества новой методики и особенности организации службы. ТМЖ. 2014; 2: 56.
  3. Allison R.R., Downie G.H, Cuenca R., et al. Photosensitizers in clinical PDT. Photodiagnosis and Photodynamic Therapy. 2004; 27: 42.
  4. Zhou L., Wang H., Li Y. Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance. Theranostics. 2018; 8(4): 1059-1074.
  5. Kalyane D., Raval N., Maheshwari R., Tambe V., Kalia K., Tekade R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. 2019; 98: 1252-1276.
  6. Чан Тхи Хай Иен, Раменская Г.В., Оборотова Н.А. Фотосенсибилизаторы хлоринового ряда в ФДТ опухолей. Российский биотерапевтический журнал. 2009; 8(4): 95-104.
  7. Privalov V.A., Lappa A.V., Kochneva E.V. Five years’ experience of photodynamic therapy with new chlorin photosensitizer. Proc. SPIE. 2005; 5863: 186-198.
  8. Vargas F., Diaz Y., Yartsev V., Marcano A., Lappa A. Photophysical properties of novel PDT photosensitizer Radachlorin in different media.Ciencia. 2004; 12:70-77.
  9. Douillard S., Olivier D., Patrice T. In vitro and in vivo evaluation of Radachlorin® sensitizer for photodynamic therapy. Photochem. Photobiol. Sci. 2009; 8: 405-413.
  10. Решетников А.В. Фотосенсибилизаторы в современной клинической практике (обзор). Материалы научно-практической конференции оториноларингологов ЦФО РФ «Лазерные технологии в оториноларингологии» / Под ред. В.Г. Зенгера и А.Н. Наседкина. Тула. 2007.
  11. Темнов А.А., Склифас А.Н., Кукушкин Н.И. и др. Влияние триблоксополимеров полиоксиэтилена-полиоксипропилена на степень загрузки в мезенхимальные стволовые клетки микрочастиц на основе сополимеров молочной и гликолевой кислот, содержащих хлорин е{6} и бромистый этидий. Биофизика. 2019; 64(2): 307-315.
  12. Lei Shi, Xiuli Wang, Feng Zhao, et al. In vitro evaluation of 5-aminolevulinic acid (ALA) loaded PLGA nanoparticles. International Journal of Nanomedicine. 2013: 2669-2776.
  13. Miyoshi N., Tomita G. Production and reaction of singlet oxygen in aqueous micellar solutions using pyrene as photosensitizer. Zeitschriftfür Naturforschung B. 1978; 33(6): 622-627.
  14. Sahai D., Lo J.L., Hagen I.K., Bergstrom L.et al. Metabolically convertible lipophilic derivatives of pH-sensitive amphipathic photo sensitizers. Photochem. Photobiol. 1993. 58(6): 803-808.
  15. Vermathen M., Marzorati M., Vermathen P., Bigler P. pH-dependent distribution of chlorin e6 derivatives across phospholipid bilayers probed by NMR spectroscopy. Langmuir 2010; 26(13): 11085-11094.
  16. Zheng Wang, Fan Zhang, Dan Shao, et al. Nanobullets Combine Photodynamic Therapy and Magnetic Hyperthermia to Potentiate Synergetic Anti-Metastatic Immunotherapy. Adv. Sci. 2019; 1901690: 1-10.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russkiy Vrach Publishing House, 2021
##common.cookie##