Studying the composition of the lipid complex Arctium lappa L. fruits by methods of chromato-mass spectrometry and 1H NMR spectroscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. The pharmacopoeial medicinal raw material of burdock (Arctium lappa L.) are roots. The plant has recently been introduced into the crop into cultivation and the fruits are the sowing material. If the safety stock is not used, it can be used to isolate the lipid
complex.

The goal is to study the component composition of the lipid complex of burdock fruits.

Material and Methods. Burdock fruits harvest of 2012-2015 from the biocollection of the Federal State Budgetary Institution All-Russian Scientific Research Institute of Medicinal and Aromatic Plants (Central region of the Non-Chernozem Zone of the Russian Federation) were studied. The lipid complex was isolated with hexane and analyzed by gas chromatography-mass spectrometry and 1H NMR spectroscopy. Both methods are pharmacopoeial.

Results. It was established that the content of the lipid complex in the studied fruits was no less than 24.0%. The profiles and contents of fatty acids, tocopherols, sterols, triterpene alcohols, and lignans have been established. The saponified portion of lipids by triglycerides (98.9%) is represented, di- (0.7%) and monoglycerides (0.4%) in minor quantities are present. They include predominantly linoleic (59.9%), oleic (21.9%), palmitic (8.3%) and stearic (4.8%) acids. 3.5% of fatty acids by α-linolenic acid and other unsaturated acids with three double bonds are represented. Among the lignan fraction of the lipid complex, arctiin dominates (2.2%), the content of tocopherols, up to 70% of which δ-tocopherol (0.07%) is represented. Sterols and triterpene alcohols make up 0.7%, of which up to 64% consist of β-sitosterol (28.8%), Δ7-sitosterol (13.2%), cycloartenol (11.6%) and citrostadienol (10.8 %).

Conclusions. The fruits of burdock, cultivated in the Central region of the Non-Chernozem zone of the Russian Federation, are promising medicinal raw materials with a rich composition of biologically active substances.

Full Text

Restricted Access

About the authors

E. Yu. Babaeva

All-Russian Scientific Research Institute of Medicinal and Aromatic Plants (VILAR)

Author for correspondence.
Email: babaevaelena@mail.ru
ORCID iD: 0000-0002-4992-6926

Ph.D. (Biol.), Associate Professor, Leading Research Scientist

Russian Federation, Grina str. 7, Moscow, 117216

S. V. Goriainov

Peoples Friendship University of Russia named after Patrice Lumumba

Email: goryainovs@list.ru
ORCID iD: 0000-0002-7625-9110

Head of the Department of Gas Chromatography, Mass Spectrometry and NMR Spectroscopy, RERC «Pharmacy»

Russian Federation, Mikluho-Maklaya str., 8, Moscow, 117198

A. E. Burova

All-Russian Scientific Research Institute of Medicinal and Aromatic Plants (VILAR)

Email: alla.burova@inbox.ru
ORCID iD: 0000-0001-7161-8025

Senior Research Scientist

Russian Federation, Grina str. 7, Moscow, 117216

V. V. Vandishev

Peoples Friendship University of Russia named after Patrice Lumumba

Email: vandishev2006@mail.ru
ORCID iD: 0000-0003-1319-2841

Educational Master, Department of General Pharmaceutical and Biomedical Technology

Russian Federation, Mikluho-Maklaya str., 8, Moscow, 117198

V. A. Ivlev

Peoples Friendship University of Russia named after Patrice Lumumba

Email: verstka@rusvrach.ru
ORCID iD: 0000-0001-9664-9506

Chief Specialist, Department of Gas Chromatography, Mass Spectrometry and NMR Spectroscopy, RERC «Pharmacy»

Russian Federation, Mikluho-Maklaya str., 8, Moscow, 117198

G. A. Kalabin

Email: verstka@rusvrach.ru
Russian Federation

References

  1. Атлас лекарственных растений России. Изд. 2-е, перераб. и доп. Под ред. Н.И. Сидельникова М.: ФГБНУ ВИЛАР; 2021: 314–317. [Atlas lekarstvennyikh rastenii Rossii Red. N.I. Sidelnikov M. 2021: 314–317. (In Russ.)].
  2. Государственная фармакопея РФ XIV изд. т. 4 ФС. 2.5.0025.15 URL http://resource.rucml.ru/feml/pharmacopia/14_4/HTML/1046/index.html#zoom=z [Gosudarstvennaya farmakopeya RF XIV izd. t. 4 FS. 2.5.0025.15 URL http://resource.rucml.ru/feml/pharmacopia/14_4/HTML/1046/index.html#zoom=z. (In Russ.)].
  3. Семенихин И.Д., Семенихин В.И. Энциклопедия лекарственных растений, возделываемых в России. М. 2013; 1: 96–101 [Semenikhin I.D., Semenikhin V.I. Enciklopedia lekarstvennyikh rastenii, vozdelyivaemyikh v Rossii. M. 2013; 1:96–101. (In Russ.)].
  4. Растительные ресурсы России: дикорастущие цветковые растения, их компонентный состав и биологическая активность. Семейство Asteraceae (Compositae). Часть 1. Роды Achillea - Doronicum. Под редакцией А.Л. Буданцева СПб., М.: Товарищество научных изданий КМК; 2012; 5 [Rastitelnyie resursyi Rossii: dikorastushchie tsvetkovie rasteniya, ikh komponentnyi sostav I biologicheskaya aktivnost. Semeistvo Asteraceae (Compositae). Chast 1 Rodyi Achillea – Doronicum. Pod redakciei Budantseva A.L. SPb., M.: Tovarishchestvo nauchnyikh izdaniyi KMK. 2012; 5. (In Russ.)].
  5. Huang X.Y., Feng Z.M., Yang Y.N. et al. Four new neolignan glucosides from the fruits of Arctium lappa. Journal of Asian Natural Products Research. 2015; 17: 504–511. doi: 10.1080/10286020.2015.1039525.
  6. Jun H., Huang X.-Y., Yang Y.-N., Feng Z.-M. Two new compounds from the fruits of Arctium lappa. Journal of Asian Natural Products Research. 2016; 18 (5): 423–428 doi: 10.1080/10286020.2016.1145671.
  7. Qin K., Liu Q., Cai H. et al. Chemical analysis of raw and processed Fructus Arctii by high-performance liquid chromatography/diode array detection-electrospray ionization-mass spectrometry. Pharmacognosy Magazine. 2014; 10(40): 541–546. doi: 10.4103/0973-1296.141806.
  8. Kravtsova S.S., Khasanov V.V. Lignans and fatty-acid composition of Arctium lappa seeds. Chemistry of Natural Compounds. 2011; 47(5). [Russian original No. 5, 2011]: 800–801. DOI: 0009-3130/11/4705-0800.
  9. Yang M., Xu X., Xie C. et al. Separation and Purification of Arctiin, Arctigenin, Matairesinol, and Lappaol F from Fructus Arctii by High-Speed Counter-Current Chromatography. Separation Science and Technology. 2013; 48: 1738–1744. doi: 10.1080/01496395.2012.753631.
  10. Mir S.A., Dar L.A., Ali T. et al. Arctium lappa: A review on its phytochemistry and pharmacology, in Edible Plants in Health and Diseases, Springer, Singapore. 2022; II: 327–348. doi: 10.1007/978-981-16-4959-2_10.
  11. Ferracane R., Graziani G., Gallo M. et al. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. Journal of Pharmaceutical and Biomedical Analysis. 2010; 51: 399–404.
  12. Liu J., Cai Y.-Zh., Wong R.N.S. et al. Comparative analysis of caffeoylquinic acids and lignans in roots and seeds among various burdock (Arctium lappa) genotypes with high antioxidant activity. Journal of Agricultural and Food Chemistry. 2012; 60(16): 4067–4075. doi: 10.1021/jf2050697.
  13. Dias M.M., Zuza O., Riani L.R. et al. In vitro schistosomicidal and antiviral activities of Arctium lappa L. (Asteraceae) against Schistosoma mansoni and Herpes simplex virus-1. Biomedicine and Pharmacotherapy. 2017; 94: 489–498. doi: 10.1016/j.biopha.2017.07.116/.
  14. Chen K.Y., Lin J.A., Yao H.-Y. et al. Arctigenin protects against steatosis in WRL68 hepatocytes through activation of phosphoinosi-tide 3-kinase/protein kinase B and AMP-activated protein kinase pathways. Nutrition Research. 2018; 52: 87–97. doi: 10.1016/j.nutres.2018.02.004.
  15. Su S., Cheng X., Wink M. Natural lignans from Arctium lappa modulate P-glycoprotein efflux function in multidrug resistant can-cer cells. Phytomedicine. 2015; 22: 301–307. doi: 10.1016/j.phymed.2014.12.
  16. Бабаева Е.Ю., Грязнов М.Ю. Исследование химического со-става летучих компонентов плодов пижмы обыкновенной (Tanacetum vulgare L.) методом хромато-масс-спектрометрии. Вопросы биологической, медицинской и фармацевтической химии. 2018; 21 (4): 8–11. doi: 10.29296/25877313-2018-04-02 [Babaeva E.Yu., Gryaznov M.Yu. Issledovanie khimicheskogo sostava letuchikh komponentov pizhmyi obyiknovennoi (Tanace-tum vulgare L.) metodom chromate-mass spektrometrii. Voprosy biologicheskoj, medicinskoj i farmacev-ticheskoj himii. 2018; 21 (4): 8–11. doi: 10.29296/25877313-2018-04-02. (In Russ.)].
  17. Патент РФ на изобретение RU 2185738 С1. Растительное масло и способ его получения - Яндекс.Патенты (yandex.ru) [Patent na izobretenie. RU 2185738 С1. Rastitel'noe maslo i sposob ego polucheniya. (In Russ.)].
  18. Goryainov S.V., Khromov A.V., Bakureza G. et al. Results of a comparative study of Nigella sativa L. Seeds oils composition. Pharmacy & Pharmacology. 2020; 8(1): 29–39. doi: 10.19163/2307-9266-2020-8-1-29-39.
  19. Goriainov S.V., Esparza, C.A., Borisova, A.R. et al. Phytochemical Study of the Composition of the Unsaponifiable Fraction of Vari-ous Vegetable Oils by Gas Chromatography–Mass Spectrometry. Journal of Analytical Chemistry. 2021; 76: 1635–1644. doi: 10.1134/S1061934821140045.
  20. Sheychenko O.P., Sheychenko V.I., Goriainov S.V. et al. Chemical Composition and Biological Activity of Rosmatin, a Dry Extract from Dracocephalum moldavica L. Russian Journal of Bioorganic Chemistry. 2022; 48(7): 1550–1559.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Fragment of the chromatogram of the lipid complex of burdock fruits by total ion current (the elution region of compounds of the unsaponifiable fraction of tocopherols, sterols and triterpene alcohols; the names of the identified substances are given in Table 2)

Download (39KB)
3. Fig. 2. Fragment of UV chromatogram (λ=280,0 nm) of a water-methanol extract from the lipid complex of burdock fruits (lignan elution region; names of identified compounds are given in Table 3)

Download (58KB)

Copyright (c) 2024 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies