Safety, pharmacokinetics and mechanism of lipid-lowering action of polysaccharide l-rhamnopyranosyl-6-o-methyl-galacturonan isolated from the birch leaves (betula pendula roth.)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Biologically active substances of plant origin are the subject of study in the context of search and development of new pharmacological agents capable of influencing cholesterol metabolism in the body. The article presents the results of safety assessment, pharmacokinetics and mechanism of pharmacological activity of a new promising hypocholesterolemic agent –  L-rhamnopyranosyl-6-O-methyl-galacturonan, a polysaccharide isolated from the leaves of birch (Betula pendula Roth.).

Objective of the study – comprehensive study of pharmacokinetic parameters, safety and mechanisms of activity of  L-rhamnopyranosyl-6-O-methyl-galacturonan in vivo and in vitro.

Material and Methods. Evaluation of acute toxicity by single intragastric or intraperitoneal administration was performed on BALB/c mice and SD rats (Sprague-Dawley). To determine the effect of polysaccharide on bile acid excretion in rats with experimental hyperlipidaemia, faeces were collected for bile acid determination. Blood plasma was used in the evaluation of pharmacokinetics. Detection was performed using high-performance liquid chromatography mass spectrometry method. To assess the sorption activity of polysaccharide, polysaccharide or a comparison drug cholestyramine was added to a solution of cholic or deoxycholic acid, unbound bile acids were quantified. Light microscopy was used to visualise polysaccharide-bile acid complexes.

Results. After intragastric administration of polysaccharide at a dose of 1500 mg/kg the object of the study is practically not subjected to absorption from the digestive tract and can exert its hypolipidemic effect through effects directly in the intestinal lumen. Polysaccharide does not penetrate into organs and tissues and has no systemic action, it is completely excreted through the GI tract. According to the results of acute toxicity experiments the investigated substance can be characterised as practically non-toxic. The mechanism of hypolipidemic action of polysaccharide is associated with its ability to bind bile acids in the intestine, which is confirmed by the obtained data on the increase in the excretion of bile acids with faeces in laboratory animals receiving polysaccharide, and the established ability of polysaccharide to bind bile acids in vitro.

Conclusions. After oral administration, L-rhamnopyranosyl-6-O-methyl-galacturonan is practically not absorbed from the digestive tract, has no toxic effects, and exerts its hypolipidemic effect by binding bile acids in the intestinal lumen.

Full Text

Restricted Access

About the authors

S. V. Krivoshchekov

Siberian State Medical University of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: ksv_tsu@mail.ru
ORCID iD: 0000-0001-5505-7141

Ph.D. (Chem.), Associate Professor, Associate Professor of the Department of Pharmaceutical Analysis

Russian Federation, Moskovsky tract 2, Tomsk, 634050

E. E. Buyko

Siberian State Medical University of the Ministry of Health of the Russian Federation

Email: buykoevgen@yandex.ru
ORCID iD: 0000-0002-6714-1938

Junior Research Scientist, Central Research Laboratory

Russian Federation, Moskovsky tract 2, Tomsk, 634050

A. M. Guriev

Siberian State Medical University of the Ministry of Health of the Russian Federation

Email: titan-m@mail.ru
ORCID iD: 0000-0002-1120-4979

Dr.Sc. (Pharm.), Head of the Center for Technology, Central Research Laboratory

Russian Federation, Moskovsky tract 2, Tomsk, 634050

O. A. Kaidash

Siberian State Medical University of the Ministry of Health of the Russian Federation

Email: kaidash.oa@ssmu.ru
ORCID iD: 0000-0001-8761-7537

Ph.D. (Biol.), Senior Research Scientist, Center for Preclinical Research, Central Research Laboratory

Russian Federation, Moskovsky tract 2, Tomsk, 634050

O. Y. Rybalkina

Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: rybalkina.oy@ssmu.ru
ORCID iD: 0000-0001-8577-4520

Ph.D. (Biol.), Research Scientist, Laboratory of Oncopharmacology

Russian Federation, 3 Lenin Ave., Tomsk, 634028

E. A. Kiseleva

Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: Kiseleva_ea@pharmso.ru
ORCID iD: 0009-0000-0228-5490

Junior Research Scientist, Laboratory of Oncopharmacology, E.D. Goldberg Research Institute of Pharmacology and Regenerative Medicine

Russian Federation, 3 Lenin Ave., Tomsk, 634028

V. V. Ivanov

Siberian State Medical University of the Ministry of Health of the Russian Federation

Email: ivanovvv1953@gmail.com
ORCID iD: 0000-0003-3326-729X

Ph.D. (Biol.), Associate Professor, Head of the Center for Preclinical Research, Central Research Laboratory

Russian Federation, Moskovsky tract 2, Tomsk, 634050

M. V. Belousov

Siberian State Medical University of the Ministry of Health of the Russian Federation

Email: mvb63@mail.ru
ORCID iD: 0000-0002-2153-7945

Dr.Sc. (Pharm.), Head of the Department of Pharmaceutical Analysis

Russian Federation, Moskovsky tract 2, Tomsk, 634050

References

  1. Xu Y., Zhang X., Yan X. H. et al. Characterization, hypolipidemic and antioxidant activities of degraded polysaccharides from Ganoderma lucidum. Int J Biol Macromol. 2019; 135(15): 706–716.
  2. Xie J.H., Jin M.L., Morris G.A. et al. Advances on bioactive polysaccharides from medicinal plants. Crit Rev Food Sci Nutr. 2016; 56(1): S60–84.
  3. Zeng P., Li J., Chen Y. et al. The structures and biological functions of polysaccharides from traditional Chinese herbs. Prog Mol Biol Transl Sci. 2019; 163: 423–444.
  4. Ровкина К.И., Буйко Е.Е., Иванов В.В. и др. Гиполипидемическая активность полисахаридов растительного происхождения. Традиционная медицина. 2019; 2(57): 39–44 [Rovkina K.I., Buyko E.E., Ivanov V.V. et al. Hypolipidemic activity of polysaccharides of plant origin. Traditional Medicine. 2019; 2(57): 39–44 (In Russ.)].
  5. Rovkina K.I., Krivoshchekov S.V., Guriev A.M. et al. Development of methods for obtaining polysaccharides from birch leaves (Betula pendula Roth., Betula pubescens Ehrh.). Chem. of Plant Raw Mat. 2019; 3: 23–31.
  6. Shibakami M., Shibata K., Akashi A. Creation of Straight-Chain Cationic Polysaccharide-Based Bile Salt Sequestrants Made from Euglenoid β-1,3-Glucan as Potential Antidiabetic Agents. Pharmaceutical Research. 2018; 36(1): 23. doi: 10.1007/s11095-018-2553-8.
  7. Insull W. Jr. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. South Med J. 2006; 99: 257–273.
  8. Mazidi M., Rezaie P., Karimi E. et al. The effects of bile acid sequestrants on lipid profile and blood glucose concentrations: A systematic review and meta-analysis of randomized controlled trials. Int. J. Cardiol. 2017; 227: 850–857.
  9. Федеральный закон от 12.04.2010 N 61-ФЗ (ред. от 28.04.2023) «Об обращении лекарственных средств». [Federal`ny`j zakon ot 12.04.2010 N 61-FZ (red. ot 28.04.2023) "Ob obrashhenii lekarstvenny`x sredstv". (In Russ.)].
  10. Решение ЕЭК от 03.11.2016 № 81 «Об утверждении Правил надлежащей лабораторной практики Евразийского экономического союза в сфере обращения лекарственных средств». [Reshenie EE`K ot 03.11.2016 № 81 "Ob utverzhdenii Pravil nadlezhashhej laboratornoj praktiki Evrazijskogo e`konomicheskogo soyuza v sfere obrashheniya lekarstvenny`x sredstv". (In Russ.)].
  11. Buyko E. E., Ivanov V. V., Kaidash O. A. et al. Hypolypidemic Activity of L-Rhamnopyranosyl-6-O-Methyl-D-Galacturonan, a Polysaccharide Isolated from Birch Leaves (Betula pendula L.). Bulletin of Experimental Biology and Medicine. 2023; 174(3): 330–332.
  12. Marounek M., Volek Z., Skřivanová E. et al. Gender-based differences in the effect of dietary cholesterol in rats. Central European Journal of Biology. 2012; 7: 980–986.
  13. Suckling K. E., Benson G. M., Bond B. et al. Cholesterol lowering and bile acid excretion in the hamster with cholesty-ramine treatment. Atherosclerosis. 1991; 89(2): 183–190.
  14. Кривощеков С.В., Яновская Е.А., Гурто Р.В. и др. Валидация биоаналитической методики определения и оценка фармакокинетики нового лекарственного средства на основе полисахарида аира болотного в эксперименте на лабораторных животных. Разработка и регистрация лекарственных средств. 2024; 13(4) [Krivoshchekov S.V., Yanovskaya E.A., Gurto R.V. et al. Pharmacokinetics of a new drug based on polysaccharide from acorus calamus in an experiment on laboratory animals. 2024; 13(4). (In Russ.)].
  15. Lu T. T., Makishima M., Repa J. J. et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell. 2000; 6: 507–515.
  16. Тюрюмин Я.Л., Шантуров В.А., Тюрюмина Е.Э. Роль желчного пузыря (обзор литературы). Бюллетень ВСНЦ СО РАМН. 2011; 80(4): 347–352 [Tyuryumin Y.L., Shanturov V.A., Tyuryumina E.E. The role of the gallbladder (literature review). Bulletin of VSNTs SB RAMS. 2011; 80(4): 347–352. (In Russ.)].
  17. Zhang B., Kuipers F., de Boer J. F. et al. Modulation of bile acid metabolism to improve plasma lipid and lipoprotein profiles. Journal of clinical medicine. 2021; 11(1): 4.
  18. BeMiller J.N. Polysaccharides: properties. Carbohydrate chemistry for food scientists. 2019: 103–157.
  19. Bachir-Cherif D., Blum D., Braendli-Baiocco A. et al. Characterization of post-surgical alterations in the bile duct-cannulated rat. Xenobiotica. 2011; 41(8): 701–711.
  20. Benson G. M., Haynes C., Blanchard S. et al. In vitro studies to investigate the reasons for the low potency of cholestyramine and colestipol. Journal of pharmaceutical sciences. 1993; 82(1): 80–86.
  21. Deng Z. H., Hui-hua H. Bile salt-binding capacity and lipid-lowering mechanisms of water extracts from fresh tea leaves and tea flowers. Food Sci. 2011; 19: 96–99.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Bile acid content in the faeces of rats with chronic hyperlipidaemia induced by a high-fat diet after administration of L-RAG and cholestyramine and expressed in μmol/100g/day (A) and μmol/g of dry faeces (B); * – statistically significant differences (p<0.05) compared to the control group; # – statistically significant differences (p<0.05) compared to the high-fat diet group

Download (97KB)
3. Fig. 2. Bile acid binding and binding capacity of L-RAG and cholestyramine

Download (142KB)
4. Рис. 3. Microscopic images of the cholic acid suspension mixture: A – without L-RAG solution and B – after addition of L-RAG. Solid arrows indicate individual cholic acid crystals, dotted arrows indicate complexes formed as a result of the binding of L-RAG and cholic acid

Download (164KB)

Copyright (c) 2024 Russkiy Vrach Publishing House