Platinum coordination compounds: synthesis and application in the treatment of oncological diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This article provides an overview of platinum-based anticancer agents. Drugs based on coordination complexes of divalent platinum Pt(II) and tetravalent platinum Pt(IV) are widely used in chemotherapeutic treatment for malignant neoplasms. The development and mechanism of action of cisplatin and its derivatives, which have been approved for clinical use, are discussed. To overcome the disadvantages of Pt (II) drugs, prodrugs based on Pt (IV) have been proposed. Approaches to modifying Pt (II) and Pt(IV) drugs to increase their selectivity for tumor cells are being discussed for future use in photodynamic therapy and photoactivated chemotherapy. The photophysical properties of platinum complexes with photosensitizers suggest the possibility of a dual effect on cancer cells. Based on the analysis of available literature data, we conclude that, despite the achieved results, further development of methods to reduce toxicity and increase selectivity while maintaining therapeutic effectiveness of drugs is necessary. Additionally, an expansion of the range of action is required. We consider combined methods of cancer treatment using platinum-based drugs, which may lead to a synergistic effect, as promising approaches.

Full Text

Restricted Access

About the authors

N. I. Steblevskaya

Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Author for correspondence.
Email: steblevskaya@ich.dvo.ru
ORCID iD: 0000-0003-3114-443X
SPIN-code: 1541-9667

Dr.Sc. (Chem.), Senior Research Scientist

Russian Federation, 159 100ʰᵗ Anniversary of Vladivostok Ave., 690022, Vladivostok

M. V. Belobeletskaya

Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Email: rita@ich.dvo.ru
ORCID iD: 0000-0003-3705-0848
SPIN-code: 4011-0467

Ph.D. (Chem.), Senior Research Scientist

Russian Federation, 159 100ʰᵗ Anniversary of Vladivostok Ave., 690022, Vladivostok

M. A. Medkov

Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Email: medkov@ich.dvo.ru
ORCID iD: 0000-0002-9417-0312
SPIN-code: 8061-6645

Dr.Sc. (Chem.), Professor, Head of the Laboratory

Russian Federation, 159 100ʰᵗ Anniversary of Vladivostok Ave., 690022, Vladivostok

O. V. Shevchenko

Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences; Pacific State Medical University of the Ministry of Health of the Russian Federation

Email: shevchenko.ov@tgmu.ru
ORCID iD: 0000-0002-3113-3995
SPIN-code: 1714-4566

Ph.D. (Biol.), Research Scientist

Russian Federation, 159 10ʰᵗ Anniversary of Vladivostok Ave., 690022, Vladivostok; 2 Ostryakova Ave., Vladivostok, 690002

References

  1. Спектор Д.В., Бублей А.А., Белоглазкина Е.К. и др. Пролекарства на основе Pt(IV) как альтернатива препаратам Pt(II): синтез и биологическое действие. Успехи химии. 2023; 92(10): RCR5096. [Spektor D.V., Bubleĭ A.A., Beloglazkina E.K. et al. Prolekarstva na osnove Pt(IV) kak alternativa preparatam Pt(II): sintez i biologicheskoe deĭstvie. Uspikhi khimii. 2023; 92(10): RCR5096. (In Russ.)]. doi: 10.59761/RCR5096.
  2. Шляпина В.Л., Юртаева С.В., Рубцова М.П. и др. На распутье: механизмы апоптоза и аутофагии в жизни и смерти клетки. Aсcta naturae. 2021;13 (2): 106–115. [Shlyapina V.L., Yurtaeva S.V., Rubtsova M.P. et al. Na rasput'e: mekhanizmy apoptoza i avtofagii v zhizni i smerti kletki. Acta Naturae. 2021; 13(2): 106–115. (In Russ.)]. doi: 10.32607/actanaturae.11208.
  3. Apps M.G., Choi E.H., Wheate N.J. The state-of-play and future of platinum drugs. Endocrine-Related Cancer. 2015; 22(4): R219–R233. doi: 10.1530/ERC-15-0237.
  4. Bera A., Gautam S., Raza M.K. et al. Oxoplatin-B, a cisplatin-based platinum(IV) complex with photoactive BODIPY for mitochondria specific “chemo-PDT” activity. J Inorg Biochem. 2021; 223: 111526. doi: 10.1016/j.jinorgbio.2021.111526.
  5. Hedna R., Kovacic H., Pagano A. et al. Tau protein as therapeutic target for cancer? Focus on glioblastoma. Cancers. 2022; 14(21): 5386–5419. doi: 10.3390/cancers14215386.
  6. Piorecka K., Kurjata J., Stanczyk W.A. Nanoarchitectonics: complexes and conjugates of platinum drugs with silicon containing nanocarriers. An overview. Int J Mol Sci. 2021; 22(17): 9264–9298. doi: 10.3390/ijms22179264.
  7. Sahoo D., Deb P., Basu T. et al. Advancements in platinum-based anticancer drug development: A comprehensive review of strategies, discoveries, and future perspectives. Bioorganic & Medicinal Chemistry. 2024; 112: 117894–117917. doi: 10.1016/j.bmc.2024.117894.
  8. Zhang C., Xu Ch., Gao X. et al. Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics. 2022; 12(5): 2115–2132. doi: 10.7150/thno.6942.
  9. Rosenberg B., Van Camp L., Grimley E.B. et al. The inhibition of growth or cell division in Escherichia coli by different ionic species of platinum (IV) complexes. J Biol Chem. 1967; 242(6): 1347–1352. PMID: 5337590.
  10. Rosenberg B., VanCamp L., Trosko J.E. et al. Platinum compounds: a new class of potent antitumor agents. Nature. 1969; 222(5191): 385-386. doi: 10.1038/222385a0.
  11. Shahlaei M., Asl Sh M., Derakhshani A. et al. Platinum-based drugs in cancer treatment: Expanding horizons and overcoming resistance. J Mol Struct. 2024; 1301: 137366–137378. doi: 10.1016/j.molstruc.2023.137366.
  12. Rochon F.D., Gruia L.M. Synthesis and characterization of Pt(II) complexes with amine and carboxylato ligands. Crystal structure of (1,1-cyclobutanedicarboxylato) di-(ethyla-mine)platinum(II). Inorganica Chimica Acta. 2000; 306(2): 193–204. doi: 10.1016/S0020-1693(00)00171-7.
  13. Marotta C., Giorgi E., Binacchi F. et al. An overview of recent advancements in anticancer Pt(IV) prodrugs: new smart drug combinations, activation and delivery strategies. Inorg Chim Acta. 2023; 548: 121388. doi: 10.1016/j.ica.2023.121388.
  14. Wilson J.J., Lippard S.J. Synthetic Methods for the Preparation of Platinum Anticancer Complexes. Chem Rev. 2014; 114(8): 4470–4495. doi: 10.1021/cr4004314.
  15. Quintal S.M.O., Qu Y., Quiroga A.G. et al. Pyridine-Carboxylate Complexes of Platinum. Effect of N,O-Chelate Formation on Model Bifunctional DNA−DNA and DNA−Protein Interactions. Inorg Chem. 2005; 44(15): 5247–5253. doi: 10.1021/ic050062w.
  16. Старков А.К., Верещагин С.Н., Кожуховская Г.А. Изучение термической устойчивости препаратов, полученных на основе взаимодействия цис-дихлородиамминплатины (II) и цис-диамин (циклобутан-1, 1-дикарбоксилат-о, о) платина (II) с арабиногалактаном и их смесей. Международный научно-исследовательский журнал. 2019; 11: 111–118. [Starkov A.K., Vereshchagin S.N., Kozhu-khovskaya G.A. Izuchenie termicheskoy ustoychivosti preparatov, poluchen-nykh na osnove vzaimodeystviya tsis-dikhlorodiammineplatiny (II) i tsis-diamin (tsiklobutan-1,1-dikarboksilat-o,o) platiny (II) s arabinogalaktanom i ikh smesey. Mezhdunarodnyy nauchno-issledovatelskiy zhurnal. 2019; 11: 111–118. (In Russ.)]. doi: 10.23670/IRJ.2019.89.11.020.
  17. Кучур О.А., Кузьмина Д.О., Духинова М.С. и др. Белки семейства p53 в ответе опухолевых клеток на ионизирующее излучение: развитие проблемы. Acta Naturae. 2021; 13(3): 65–77. [Kuchur O.A., Kuz'mina D.O., Dukhikova M.S. et al. Belki semeystva p53 v otvete opukhlevykh kletok na ioniziruyushchee izlucheniye: razvitie problemy. Acta Naturae. 2021; 13(3): 65–77. (In Russ.)]. doi: 10.32607/actanaturae.11247.
  18. Гольдберг В.Е., Хричкова Т.Ю., Попова Н.О. и др. Влияние химиотерапевтического режима доцетаксел/цисплатин на состояние гранулоцитарного ростка гемопоэза у больных немелкоклеточным раком легкого. Сибирский онкологический журнал. 2016; 15(5): 18–23. [Goldberg V.E., Khrichkova T.Yu., Popova N.O. et al. Vliyanie khimioterapevticheskogo rezhima docetaxel/cisplatin na sostoyanie granulotsitarnogo rostka gemopoeza u bol'nykh nemelkokletchnym rakom legkogo. Sibirskiy onko-logicheskiy zhurnal. 2016; 15(5): 18–23. (In Russ.)]. doi: 10.21294/1814-4861-2016-15-5-18-24.
  19. Szupryczyński K., Czeleń P., Jeliński T. et al. What is the Reason That the Pharmacological Future of Chemo-therapeutics in the Treatment of Lung Cancer Could Be Most Closely Related to Nanostructures? Platinum Drugs in Therapy of Non-Small and Small Cell Lung Cancer and Their Unexpected, Possible Interactions. The Review. Intern J Nanomedicine. 2024; 19: 9503–9547. doi: 10.2147/IJN.S469217.
  20. Sutton E.C., DeRose V.J. Early nucleolar responses differentiate mechanisms of cell death induced by oxaliplatin and cisplatin. J Biol Chem. 2021; 296: 100633–100641. doi: 10.1016/j.jbc.2021.100633.
  21. Veclani D., Tolazzi M., Cerón-Carrasco J.P. et al. Intercalation Ability of Novel Monofunctional Platinum Anticancer Drugs: A Key Step in Their Biological Action. J Chem Inf Model. 2021; 61(9): 4391–4399. doi: 10.1021/acs.jcim.1c00430.
  22. Wang X., Wang M., Cai M. et al. Miriplatin-loaded liposome, as a novel mitophagy inducer, suppresses pancreatic cancer proliferation through blocking POLG and TFAM-mediated mtDNA replication. Acta Pharm Sin. 2023; 13: 4477–4501. doi: 10.1016/j.apsb.2023.07.009.
  23. Johnstone T.C., Suntharalingam K., Lippard S.J. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem Rev. 2016; 116(5): 3436–3486. doi: 10.1021/acs.chemrev.5b00597.
  24. Spector D., Krasnovskaya O., Pavlov K. et al. Pt(IV) prodrugs with NSAIDs as axial ligands. Intern J Mol Sci. 2021; 22(8): 3817–3844. doi: 10.3390/ijms22083817.
  25. Dikova Y.M., Yufit D.S., Williams J.A.G. Platinum(IV) complexes with tridentate, NNC-coordinating ligands: synthesis, structures, and luminescence. Inorg Chem. 2023; 62(4): 1306–1322. doi: 10.1021/acs.inorgchem.2c04116.
  26. Vaidya S.P., Patra M. Platinum glycoconjugates: “Sweet bullets” for targeted cancer therapy? Curr Opin Chem Biol. 2023; 72: 102236. doi: 10.1016/j.cbpa.2022.102236.
  27. Novak A., Zykova A.R., Potemkin V.A. et al. Platinum(IV) compounds as potential drugs: a quantitative structure-activity relationship study. BioImpacts. 2023; 13(5): 373–382. doi: 10.34172/bi.2023.24180.
  28. Ali I., Althakfi S.H., Suhail M. et al. Advances in polymeric colloids for cancer treatment. Polymers. 2022; 14(24): 5445–5468. doi: 10.3390/polym14245445.
  29. Salas-Trevino D., Saucedo-Cardenas O., Jesus de Loera-Arias M. et al. Carbon nanotubes: an alternative for platinum-based drugs delivery systems. J BUON. 2018; 23(3): 541–549.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Platinum coordination compounds with proven efficacy and clinically approved for cancer treatment: 1 – cisplatin; 2 – carboplatin; 3 – nedaplatin; 4 – oxaliplatin; 5 – picoplatin; 6 – lobaplatin; 7 – heptaplatin; 8 – miriplatin

Download (407KB)
3. Fig. 2. General formula of platinum antitumor drugs: L – ligands of the “non-leaving group”, nitrogen donors; X – ligands of the leaving group, displaced upon binding to DNA; R – axial ligands (in platinum (III) and (IV) complexes)

Download (361KB)
4. Fig. 3. Platinum coordination compounds undergoing preclinical trials: dicycloplatin; 2 – phosphoplatin; 3 – phenanthriplatin; 4 – LA-12

Download (470KB)
5. Fig. 4. Coordination compounds of Pt(IV) undergoing preclinical trials: 1 – oxoplatin; 2 – ormaplatin; 3 – iproplatin; 4 – satraplatin

Download (202KB)

Copyright (c) 2025 Russkiy Vrach Publishing House